Araştırma Makalesi
BibTex RIS Kaynak Göster

Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi

Yıl 2025, Cilt: 25 Sayı: 2, 245 - 252

Öz

Balıklar içinde bulundukları suların fiziksel ve kimyasal özelliklerinden etkilenmektedir. Bu değişimler davranışsal, histolojik ve moleküller düzeyde olabilmektedir. Solungaçlar suyla direkt temas halinde oldukları için zararlı etkenlere karşı değişimlerin başladığı ilk organlardan biridir. Bu nedenle balıklarda solungaçlar çevresel farklılıkların belirlenmesinde biyoindiktör dokular olarak kullanılır. Balıklarda solungaçlar osmoregülasyon, pH düzenlenmesi, azotlu atıkların dışarı atılması, iyon düzenlenmesi gibi pek çok görevleri vardır. Bu çalışmada Pseudotropheus acei balıklarına artan tuz konsantrasyonu uygulandı. Çalışma sonunda balıkların en fazla 27 ppt tuzluluğa adapte olduğu daha yüksek tuzluluklarda ise öldüğü gözlendi. Kontrol ve tuzluluğa adapte olan balıklardaki solungaç dokuları histolojik olarak incelendi. Balık solungaç dokusunda tuz stresine bağlı olarak nekroz ve hiperplazi gibi histopatolojik değişimler gözlendi. Tuz sterine maruz kalan Pseudotropheus acei balığı solungacındaki mukus hücre içeriğinde ve yoğunluklarında farklılıklar olduğu görüldü. Nötral glikokonjugat içeren mukus hücrelerin kontrol grubunda sınırlı olduğu tuz maruziyeti sonucu arttığı gözlendi. Karboksillenmiş glikokonjugat içeren mukus hücrelerin tuz maruziyeti sonucu 27 ppt’de daha yoğun olduğu belirlendi. O-sülfat esterli glikokonjugatları içeren mukus hücrelerinin kontrol grubunda işaretlenmediği tuz maruziyeti sonucu arttığı görüldü. Güçlü sülfatlanmış glikokonjugat içeren mukus hücrelerin kontrol grubunda işaretlenmediği, tuzluluğa bağlı artış gösterdiği belirlendi. Nötr ve güçlü asidik glikokonjugatların karşılaştırılması sonucunda asidik glikokonjugatların daha yoğun işaretlendiği ve tuz maruziyetine bağlı olarak artış gösterdiği belirlendi. Sülfatlanmış ve karboksillenmiş glikokonjugatları karşılaştırması sonucunda karboksillenmiş glikokonjugatların sülfatlanmış glikokonjugatlara oranla daha yoğun olduğu ve mukus hücre yoğunluğunda tuzluluğa bağlı artış gösterdiği gözlendi. Yapılan boyamalar sonucunda semikantitatif olarak tuz artışına bağlı mukus hücre sayısında da artış olduğu gözlendi.

Etik Beyan

YUHADYEK 2023/05-36

Destekleyen Kurum

TÜBİTAK 2209-A üniversite öğrencileri araştırma destek programı

Proje Numarası

1919B012215185

Teşekkür

Çalışmaya maddi destek sağlayan TÜBİTAK 2209-A üniversite öğrencileri araştırma destek programına (1919B012215185 no’lu proje) teşekkürlerimi sunarım

Kaynakça

  • Alkan, Z., and Oğuz, A. R., 2021. Investigation of gill mucus cells of Lake Van fish (Alburnus tarichi) during reproductive migration. Fish Physiology and Biochemistry, 47(2), 409-419. https://doi.org/10.1007/s10695-020-00921-6
  • Boat, T. F., and Cheng, P.W., 1980. Biochemistry of airway mucus secretions. In Federation Proceedings 39(13), 3067-3074.
  • Bosi, G., Shinn, A. P., Giari, L., and Sayyaf Dezfuli, B., 2015. Enteric neuromodulators and mucus discharge in a fish infected with the intestinal helminth Pomphorhynchus laevis. Parasites & Vectors, 8(1), 1-13. https://doi.org/10.1186/s13071-015-0970-7
  • Clunes, M. T., and Boucher, R. C., 2007. Cystic fibrosis: the mechanisms of pathogenesis of an inherited lung disorder. Drug Discovery Today: Disease Mechanisms, 4(2), 63-72. https://doi.org/10.1016/j.ddmec.2007.09.001
  • Dash, S., Das, S. K., Samal, J., and Thatoi, H. N., 2018. Epidermal mucus, a major determinant in fish health: a review. Iranian journal of veterinary research, 19(2), 72.
  • Dekker, J., Rossen, J. W., Büller, H. A., and Einerhand, A. W., 2002. The MUC family: an obituary. Trends in biochemical sciences, 27(3), 126-131. https://doi.org/10.1016/S0968-0004(01)02052-7
  • Domeneghini, C., Straini, R. P., and Veggetti, A., 1998. Gut glycoconjugates in Sparus aurata L. (Pisces, Teleostei). A comparative histochemical study in larval and adult ages. Histology and Histopathology, 13(2), 359-372. Edwards, S. L., and Marshall, W.S., 2012. Principles and patterns of osmoregulation and euryhalinity in fishes. In Fish physiology, 32, 1-44. https://doi.org/10.1016/B978-0-12-396951-4.00001-3
  • Evans, T.G., 2010. Co‐ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. Journal of Fish Biology, 76(8), 1903-1925. https://doi.org/10.1111/j.1095-8649.2010.02590.x
  • Gonzalez, R. J., 2012. The physiology of hyper-salinity tolerance in teleost fish: a review. Journal of Comparative Physiology B, 182, 321-329. https://doi.org/10.1007/s00360-011-0624-9
  • Handayani, K. S., Soegianto, A., and Chang, C. F., 2020. Effect of salinity on osmoregulation and histopathology in gills of tilapia (Oreochromis niloticus). Asian Journal of Water, Environment and Pollution, 17(3), 7-11. https://doi.org/10.3233/AJW200028
  • Jensen, M. K., Madsen, S. S., and Kristiansen, K., 1998. Osmoregulation and salinity effects on the expression and activity of Na+, K+‐ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). Journal of Experimental Zoology, 282(3), 290-300. https://doi.org/10.1002/(SICI)1097-010X(19981015)282:3<290::AID-JEZ2>3.0.CO;2-H
  • Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., and Beklioğlu, M., 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x
  • Komoroske, L. M., Jeffries, K. M., Connon, R. E., Dexter, J., Hasenbein, M., Verhille, C., and Fangue, N. A., 2016. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evolutionary Applications, 9(8), 963-981. https://doi.org/10.1242/jeb.118695
  • Kültz, D., 2015. Physiological mechanisms used by fish to cope with salinity stress. The Journal of Experimental Biology, 218(12), 1907-1914. https://doi.org/10.1242/jeb.118695
  • Makrinos, D. L., and Bowden, T.J., 2016. Natural environmental impacts on teleost immune function. Fish & Shellfish Immunology, 53, 50-57. https://doi.org/10.1016/j.fsi.2016.03.008
  • Moron, S. E, Andrade C. A. D, and Fernandes, M. N., 2009. Response of mucous cells of the gills of traíra (Hoplias malabaricus) and jeju (Hoplerythrinus unitaeniatus) (Teleostei: Erythrinidae) to hypo-and hyper-osmotic ion stress. Neotrop Ichthyol 7(3): 491–498. https://doi.org/10.1590/S1679-62252009000300017
  • Nero, V., Farwell, A., Lee, L. E. J., Van Meer, T., MacKinnon, M. D., and Dixon, D. G., 2006. The effects of salinity on naphthenic acid toxicity to yellow perch: Gill and liver histopathology. Ecotoxicology and environmental safety, 65(2), 252-264. https://doi.org/10.1016/j.ecoenv.2005.07.009
  • Oguz, A. R., Sepil, A., Alkan, Z., Ergoz Azizoglu, B., Şen, F., and Kaval Oguz, E., 2023. Effects of salinity on gill histology in sailfin velifera (Poecilia velifera). Aquaculture International, 1-13. https://doi.org/10.1007/s10499-023-01286-2
  • Oğuz, A. R., and Kaval Oğuz, E., 2020. Histopathology and immunohistochemistry of gills of Van fish (Alburnus tarichi, Güldenstädt, 1814) infected with myxosporean parasites. Journal of histotechnology, 43(2), 76-82. https://doi.org/10.1080/01478885.2019.1686848
  • Ordóñez-Grande, B., Guerreiro, P. M., Sanahuja, I., Fernández-Alacid, L., and Ibarz, A., 2021. Environmental salinity modifies mucus exudation and energy use in European sea bass juveniles. Animals, 11(6), 1580. https://doi.org/10.3390/ani11061580
  • Pourmozaffar, S., Tamadoni Jahromi, S., Rameshi, H., Sadeghi, A., Bagheri, T., Behzadi, S., and Abrari Lazarjani, S., 2020. The role of salinity in physiological responses of bivalves. Reviews in Aquaculture, 12(3), 1548-1566. https://doi.org/10.1111/raq.12397
  • Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B., Sasal, P., 2018. Biological and ecological roles of external fish mucus: a review. Fishes, 3(4):41. https://doi.org/10.3390/fishes3040041
  • Roberts, S. D., and Powell, M. D., 2003. Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134(3), 525-537. https://doi.org/10.1016/S1095-6433(02)00327-6
  • Rodriguez, C., Prieto, G. I., Vega, I. A., and Castro-Vazquez, A., 2019. Functional and evolutionary perspectives on gill structures of an obligate air-breathing, aquatic snail. PeerJ, 7, 7342-7363.
  • Ruiz-Jarabo, I., Tinoco, A. B., Vargas-Chacoff, L., Martos-Sitcha, J. A., Rodríguez-Rúa, A., Cárdenas, S., and Mancera, J. M., 2019. Environmental salinity affects growth and metabolism in fingerling meagre (Argyrosomus regius). Fishes, 4(1), 6. https://doi.org/10.3390/fishes4010006
  • Sathorn, S., Senarat, S., Kettratad, J., Kaneko, G., Jiraungkoorskul, W., and Wongkamhaeng, K., 2021. Effects of salinity level on the activity of chloride cell and mucus secreting cell in the gill of the female Shortfin molly, Poecilia mexicana Steindachner, Veterinary Integrative Sciences, 19(2), 173-184.
  • Sellner, K. G., Lacouture, B. R., and Parrish, C. R., 1988. Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. Journal of Plankton Research, 10(1), 49-61. https://doi.org/10.1093/plankt/10.1.49
  • Shephard, K. L., 1994. Functions for fish mucus. Reviews in fish biology and fisheries, 4, 401-429. https://doi.org/10.1007/BF00042888
  • Shirangi, S. A., Kalbassi, M. R., Khodabandeh, S., Jafarian, H., Lorin-Nebel, C., Farcy, E., and Lignot, J. H., 2016. Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish physiology and biochemistry, 42, 1741-1754. https://doi.org/10.1007/s10695-016-0254-y
  • Wilson, J. M., and Laurent, P., 2002. Fish gill morphology: inside out. Journal of experimental Zoology, 293(3), 192-213. https://doi.org/10.1002/jez.10124
  • Xu, Z., Gan, L., Li, T., Xu, C., Chen, K., Wang, X., and Li, E., 2015. Transcriptome profiling and molecular pathway analysis of genes in association with salinity adaptation in Nile tilapia Oreochromis niloticus. PLoS One, 10(8), 0136506. https://doi.org/10.1371/journal.pone.0136506
  • Zayed, A. E., and Mohamed, S. A., 2004. Morphological study on the gills of two species of fresh water fishes: Oreochromis niloticus and Clarias gariepinus. Annals of Anatomy-Anatomischer Anzeiger, 186(4), 295-304. https://doi.org/10.1016/S0940-9602(04)80044-X

Examination of gill mucus cells of Pseudotropheus acei fish exposed to salinity

Yıl 2025, Cilt: 25 Sayı: 2, 245 - 252

Öz

Fish are affected by the physical and chemical properties of the waters they live in. These changes can be at behavioral, histological and molecular levels. Since gills are in direct contact with water, they are one of the first organs where changes against harmful factors begin. For this reason, gills in fish are used as bioindicator tissues in determining environmental differences. Gills in fish have many functions such as osmoregulation, pH regulation, removal of nitrogenous waste, and ion regulation. In our experimental study, increasing salt concentration was applied to Pseudotropheus acei fish. As a result of the application, it was observed that the fish adapted to a maximum salinity of 27 ppt and died in higher salinities. Gill tissues of control and salinity-adapted fish were examined histologically. Histopathological changes such as necrosis and hyperplasia were observed in fish gill tissue due to salt stress. It was observed that there were differences in the mucus cell content and density in the gill tissue of Pseudotropheus acei fish exposed to salt. It was observed that mucus cells containing neutral glycoconjugate increased as a result of salt exposure, which was limited in the control group. It was determined that mucus cells containing carboxylated glycoconjugate were more dense at 27 ppt as a result of salt exposure. It was observed that mucus cells containing O-sulfate ester glycoconjugates increased as a result of salt exposure, while they were not marked in the control group. It was determined that mucus cells containing strong sulfated glycoconjugate were not marked in the control group and increased depending on salinity. As a result of the comparison of neutral and strongly acidic glycoconjugates, it was determined that acidic glycoconjugates were marked more intensely and increased depending on salt exposure. As a result of the comparison of sulfated and carboxylated glycoconjugates, it was observed that carboxylated glycoconjugates were more dense than sulfated glycoconjugates and showed an increase in mucus cell density depending on salinity. As a result of the staining, it was observed that there was a semiquantitative increase in the number of mucus cells due to the increase in salt.

Proje Numarası

1919B012215185

Kaynakça

  • Alkan, Z., and Oğuz, A. R., 2021. Investigation of gill mucus cells of Lake Van fish (Alburnus tarichi) during reproductive migration. Fish Physiology and Biochemistry, 47(2), 409-419. https://doi.org/10.1007/s10695-020-00921-6
  • Boat, T. F., and Cheng, P.W., 1980. Biochemistry of airway mucus secretions. In Federation Proceedings 39(13), 3067-3074.
  • Bosi, G., Shinn, A. P., Giari, L., and Sayyaf Dezfuli, B., 2015. Enteric neuromodulators and mucus discharge in a fish infected with the intestinal helminth Pomphorhynchus laevis. Parasites & Vectors, 8(1), 1-13. https://doi.org/10.1186/s13071-015-0970-7
  • Clunes, M. T., and Boucher, R. C., 2007. Cystic fibrosis: the mechanisms of pathogenesis of an inherited lung disorder. Drug Discovery Today: Disease Mechanisms, 4(2), 63-72. https://doi.org/10.1016/j.ddmec.2007.09.001
  • Dash, S., Das, S. K., Samal, J., and Thatoi, H. N., 2018. Epidermal mucus, a major determinant in fish health: a review. Iranian journal of veterinary research, 19(2), 72.
  • Dekker, J., Rossen, J. W., Büller, H. A., and Einerhand, A. W., 2002. The MUC family: an obituary. Trends in biochemical sciences, 27(3), 126-131. https://doi.org/10.1016/S0968-0004(01)02052-7
  • Domeneghini, C., Straini, R. P., and Veggetti, A., 1998. Gut glycoconjugates in Sparus aurata L. (Pisces, Teleostei). A comparative histochemical study in larval and adult ages. Histology and Histopathology, 13(2), 359-372. Edwards, S. L., and Marshall, W.S., 2012. Principles and patterns of osmoregulation and euryhalinity in fishes. In Fish physiology, 32, 1-44. https://doi.org/10.1016/B978-0-12-396951-4.00001-3
  • Evans, T.G., 2010. Co‐ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. Journal of Fish Biology, 76(8), 1903-1925. https://doi.org/10.1111/j.1095-8649.2010.02590.x
  • Gonzalez, R. J., 2012. The physiology of hyper-salinity tolerance in teleost fish: a review. Journal of Comparative Physiology B, 182, 321-329. https://doi.org/10.1007/s00360-011-0624-9
  • Handayani, K. S., Soegianto, A., and Chang, C. F., 2020. Effect of salinity on osmoregulation and histopathology in gills of tilapia (Oreochromis niloticus). Asian Journal of Water, Environment and Pollution, 17(3), 7-11. https://doi.org/10.3233/AJW200028
  • Jensen, M. K., Madsen, S. S., and Kristiansen, K., 1998. Osmoregulation and salinity effects on the expression and activity of Na+, K+‐ATPase in the gills of European sea bass, Dicentrarchus labrax (L.). Journal of Experimental Zoology, 282(3), 290-300. https://doi.org/10.1002/(SICI)1097-010X(19981015)282:3<290::AID-JEZ2>3.0.CO;2-H
  • Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., and Beklioğlu, M., 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x
  • Komoroske, L. M., Jeffries, K. M., Connon, R. E., Dexter, J., Hasenbein, M., Verhille, C., and Fangue, N. A., 2016. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evolutionary Applications, 9(8), 963-981. https://doi.org/10.1242/jeb.118695
  • Kültz, D., 2015. Physiological mechanisms used by fish to cope with salinity stress. The Journal of Experimental Biology, 218(12), 1907-1914. https://doi.org/10.1242/jeb.118695
  • Makrinos, D. L., and Bowden, T.J., 2016. Natural environmental impacts on teleost immune function. Fish & Shellfish Immunology, 53, 50-57. https://doi.org/10.1016/j.fsi.2016.03.008
  • Moron, S. E, Andrade C. A. D, and Fernandes, M. N., 2009. Response of mucous cells of the gills of traíra (Hoplias malabaricus) and jeju (Hoplerythrinus unitaeniatus) (Teleostei: Erythrinidae) to hypo-and hyper-osmotic ion stress. Neotrop Ichthyol 7(3): 491–498. https://doi.org/10.1590/S1679-62252009000300017
  • Nero, V., Farwell, A., Lee, L. E. J., Van Meer, T., MacKinnon, M. D., and Dixon, D. G., 2006. The effects of salinity on naphthenic acid toxicity to yellow perch: Gill and liver histopathology. Ecotoxicology and environmental safety, 65(2), 252-264. https://doi.org/10.1016/j.ecoenv.2005.07.009
  • Oguz, A. R., Sepil, A., Alkan, Z., Ergoz Azizoglu, B., Şen, F., and Kaval Oguz, E., 2023. Effects of salinity on gill histology in sailfin velifera (Poecilia velifera). Aquaculture International, 1-13. https://doi.org/10.1007/s10499-023-01286-2
  • Oğuz, A. R., and Kaval Oğuz, E., 2020. Histopathology and immunohistochemistry of gills of Van fish (Alburnus tarichi, Güldenstädt, 1814) infected with myxosporean parasites. Journal of histotechnology, 43(2), 76-82. https://doi.org/10.1080/01478885.2019.1686848
  • Ordóñez-Grande, B., Guerreiro, P. M., Sanahuja, I., Fernández-Alacid, L., and Ibarz, A., 2021. Environmental salinity modifies mucus exudation and energy use in European sea bass juveniles. Animals, 11(6), 1580. https://doi.org/10.3390/ani11061580
  • Pourmozaffar, S., Tamadoni Jahromi, S., Rameshi, H., Sadeghi, A., Bagheri, T., Behzadi, S., and Abrari Lazarjani, S., 2020. The role of salinity in physiological responses of bivalves. Reviews in Aquaculture, 12(3), 1548-1566. https://doi.org/10.1111/raq.12397
  • Reverter, M., Tapissier-Bontemps, N., Lecchini, D., Banaigs, B., Sasal, P., 2018. Biological and ecological roles of external fish mucus: a review. Fishes, 3(4):41. https://doi.org/10.3390/fishes3040041
  • Roberts, S. D., and Powell, M. D., 2003. Comparative ionic flux and gill mucous cell histochemistry: effects of salinity and disease status in Atlantic salmon (Salmo salar L.). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 134(3), 525-537. https://doi.org/10.1016/S1095-6433(02)00327-6
  • Rodriguez, C., Prieto, G. I., Vega, I. A., and Castro-Vazquez, A., 2019. Functional and evolutionary perspectives on gill structures of an obligate air-breathing, aquatic snail. PeerJ, 7, 7342-7363.
  • Ruiz-Jarabo, I., Tinoco, A. B., Vargas-Chacoff, L., Martos-Sitcha, J. A., Rodríguez-Rúa, A., Cárdenas, S., and Mancera, J. M., 2019. Environmental salinity affects growth and metabolism in fingerling meagre (Argyrosomus regius). Fishes, 4(1), 6. https://doi.org/10.3390/fishes4010006
  • Sathorn, S., Senarat, S., Kettratad, J., Kaneko, G., Jiraungkoorskul, W., and Wongkamhaeng, K., 2021. Effects of salinity level on the activity of chloride cell and mucus secreting cell in the gill of the female Shortfin molly, Poecilia mexicana Steindachner, Veterinary Integrative Sciences, 19(2), 173-184.
  • Sellner, K. G., Lacouture, B. R., and Parrish, C. R., 1988. Effects of increasing salinity on a cyanobacteria bloom in the Potomac River estuary. Journal of Plankton Research, 10(1), 49-61. https://doi.org/10.1093/plankt/10.1.49
  • Shephard, K. L., 1994. Functions for fish mucus. Reviews in fish biology and fisheries, 4, 401-429. https://doi.org/10.1007/BF00042888
  • Shirangi, S. A., Kalbassi, M. R., Khodabandeh, S., Jafarian, H., Lorin-Nebel, C., Farcy, E., and Lignot, J. H., 2016. Salinity effects on osmoregulation and gill morphology in juvenile Persian sturgeon (Acipenser persicus). Fish physiology and biochemistry, 42, 1741-1754. https://doi.org/10.1007/s10695-016-0254-y
  • Wilson, J. M., and Laurent, P., 2002. Fish gill morphology: inside out. Journal of experimental Zoology, 293(3), 192-213. https://doi.org/10.1002/jez.10124
  • Xu, Z., Gan, L., Li, T., Xu, C., Chen, K., Wang, X., and Li, E., 2015. Transcriptome profiling and molecular pathway analysis of genes in association with salinity adaptation in Nile tilapia Oreochromis niloticus. PLoS One, 10(8), 0136506. https://doi.org/10.1371/journal.pone.0136506
  • Zayed, A. E., and Mohamed, S. A., 2004. Morphological study on the gills of two species of fresh water fishes: Oreochromis niloticus and Clarias gariepinus. Annals of Anatomy-Anatomischer Anzeiger, 186(4), 295-304. https://doi.org/10.1016/S0940-9602(04)80044-X
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvan Bilimi (Diğer)
Bölüm Makaleler
Yazarlar

Bahar Öner 0009-0004-1203-4336

Ahmet Regaib Oğuz 0000-0001-6431-0508

Zehra Alkan Çekiç 0000-0003-2591-0839

Proje Numarası 1919B012215185
Erken Görünüm Tarihi 28 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 11 Temmuz 2024
Kabul Tarihi 9 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 2

Kaynak Göster

APA Öner, B., Oğuz, A. R., & Alkan Çekiç, Z. (2025). Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 245-252.
AMA Öner B, Oğuz AR, Alkan Çekiç Z. Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Mart 2025;25(2):245-252.
Chicago Öner, Bahar, Ahmet Regaib Oğuz, ve Zehra Alkan Çekiç. “Tuzluluğa Maruz bırakılan Pseudotropheus Acei balığının Solungaç Mukus hücrelerinin Incelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 2 (Mart 2025): 245-52.
EndNote Öner B, Oğuz AR, Alkan Çekiç Z (01 Mart 2025) Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 245–252.
IEEE B. Öner, A. R. Oğuz, ve Z. Alkan Çekiç, “Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 2, ss. 245–252, 2025.
ISNAD Öner, Bahar vd. “Tuzluluğa Maruz bırakılan Pseudotropheus Acei balığının Solungaç Mukus hücrelerinin Incelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (Mart 2025), 245-252.
JAMA Öner B, Oğuz AR, Alkan Çekiç Z. Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:245–252.
MLA Öner, Bahar vd. “Tuzluluğa Maruz bırakılan Pseudotropheus Acei balığının Solungaç Mukus hücrelerinin Incelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 2, 2025, ss. 245-52.
Vancouver Öner B, Oğuz AR, Alkan Çekiç Z. Tuzluluğa maruz bırakılan Pseudotropheus acei balığının solungaç mukus hücrelerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):245-52.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.