Araştırma Makalesi
BibTex RIS Kaynak Göster

Cu-Sn Alaşımında Gözlenen Martensitik Dönüşümün Kristalografik Analizi

Yıl 2025, Cilt: 25 Sayı: 2, 279 - 286

Öz

%14,5 oranında Cu bileşimlerine sahip olan Cu-Sn külçesi. yüksek saflıkta (en az %99,9) ark eritme yoluyla hazırlandı. Külçe, β-fazını elde etmek için Argon atmosferinde 1050 °C'de 50 saat boyunca tavlandı. Martensit faz değişimi, ostenit numunenin sıvı nitrojen içerisinde soğutulmasından sonra gerçekleşti. Bu çalışmada sonsuz küçük deformasyon yaklaşımının katı versiyonunu kullanarak, habit düzlemi normali, kafes değişmez kesme miktarı, toplam şekil deformitesinin büyüklüğü, ostenit ve martensit fazı arasındaki yönelim ilişkileri vb. gibi kristalografik yönelimler ile bağlantılı Cu-Sn alaşımı yalnızca ostenit ve son martensit fazlarının kafes yönelimleri bilgisinden tahmin edilmiştir. Östenit ve martenzit fazlarının kafes yönelimleri, bu çalışmada Cu-Sn alaşımı üzerinde yapılan deneysel çalışmalardan ve martensitik dönüşümün gözlenen kristalografik özelliklerinin, yaklaşım kullanılarak hesaplanan değerlerle karşılaştırılması yoluyla belirlenmektedir. Bu alaşım sistemi için hesaplanan ve gözlemlenen sonuçlar arasındaki uyum, diğerleriyle birlikte, bu çalışmada açıklanan metodolojinin bu alaşım sisteminde gözlemlenen kübik fazdan ortorombik faz dönüşümüne uygulanabileceğine dair ikna edici kanıt sağlar.

Etik Beyan

Etik bir durum söz konusu değildir.

Destekleyen Kurum

Yok

Teşekkür

Yok

Kaynakça

  • Armağan, O., Kırındı T. 2021. Effect of Mn ammount on phase transformations and magnetic properties in Fe-Mn-Mo-Si alloys. Archives of Metallurgy and Materials, 66(1), 259-266. https://doi.org/10.24425/amm.2021.134783
  • Armağan, O., Sarı, U., Çağrı, Y., Kırındı T. 2017. Effects of thermal and deformation on martensitic transformation and magnetic properties in Fe-17%Mn-4.5%X (X = Co and Mo) alloys. Micron, 103, 34-44. https://doi.org/10.1016/j.micron.2017.09.007
  • Arslan, H. 2014. Structural Evolution Properties of Cu-25 wt %Sn Alloy During Ball Milling. Journal of Advanced Thermal Science Research, 1(1), 25–31. http://dx.doi.org/10.15377/2409-5826.2014.01.01.4
  • Bowles, J., Dunne, D. 1969. The role of plastic accommodation in the (225) martensite transformation. Acta Metallurgica, 17, 677–685. https://doi.org/10.1016/0001-6160(69)90128-X
  • Bowles, J., Mackenzie, J. 1954. The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations. Acta Metallurgica, 2, 224–234. https://doi.org/10.1016/0001-6160(54)90102-9
  • Christian, J.W. 2002. Characteristics of Martensitic Transformations. The Theory of Transformations in Metals and Alloys, 961–991. Pergamon Oxford.
  • Ebrahimi, M., Attarilar, S., Shaeri, M.H., Gode, C., Armoon, H., Djavanroodi, F. 2019. An investigation into the effect of alloying elements on corrosion behavior of severely deformed Cu-Sn alloys by equal channel angular pressing. Archives of Civil and Mechanical Engineering, 19, 842–850. https://doi.org/10.1016/j.acme.2019.03.009
  • Efsic, E.J., Wayman, C.M. 1967. Crystallography of the fcc to bcc martensitic transformation in an iron-platinum alloy. AIME Met. Soc. Trans, 239, 873–882.
  • Emadi, F., Vuorinen, V., Mertin, S., Widell, K., Paulasto-Kröckel, M. 2022. Microstructural and mechanical characterization of Cu/Sn SLID bonding utilizing Co as contact metallization layer. Journal of Alloys and Compounds, 929, 167228. https://doi.org/10.1016/j.jallcom.2022.167228
  • Hui, J., Feng, Z., Fan, W., Yuan, X. 2018. The influence of power spinning and annealing temperature on microstructures and properties of Cu-Sn alloy. Materials Characterization, 144, 611–620. https://doi.org/10.1016/j.matchar.2018.08.015
  • Karthik, M., Abhinav, J., Shankar, K. V. 2021. Morphological and Mechanical Behaviour of Cu–Sn Alloys—A review. Metals and Materials International, 27, 1915–1946. https://doi.org/10.1007/s12540-020-00899-z
  • Kato, M., Shibata-Yanagisawa, M. 1990. Infinitesimal deformity approach of the phenomenological crystallographic theory of martensitic transformations. Journal of Materials Science, 25, 194–202. https://doi.org/10.1007/BF00544207
  • Kelly, P.M. 2003. Martensite crystallography—the apparent controversy between the infinitesimal deformity approach and the phenomenological theory of martensitic transformations. Metallurgical and Materials Transactions A, 34, 1783–1786. https://doi.org/10.1007/s11661-003-0144-7
  • Kelly, P.M. 2006. Martensite crystallography—The role of the shape strain. Materials Science and Engineering: A, 438, 43–47. https://doi.org/10.1016/j.msea.2006.02.065
  • Kennon, N. 1972. The complementary strain for the b.c.c. to orthorhombic martensite transformation in Cu-Sn alloys. Acta Metallurgica, 20, 5–10. https://doi.org/10.1016/0001-6160(72)90107-1
  • Kennon, N., Bowles, J. 1969. The crystallography of the B.C.C. to orthorhombic γ′1 martensite transformation in copper-tin alloys. Acta Metallurgica, 17, 373–380. https://doi.org/10.1016/0001-6160(69)90017-0
  • Khachaturyan, A.G., Shatalov, G.A. 1969. Theory of Macroscopic Periodicity for a Phase Transition in the Solid State. Journal of Experimental and Theoretical Physics, 29(3), 557-561.
  • Lauro, P., Kang, S.K., Choi, W.K., Shih, D.-Y. 2003. Effects of mechanical deformity and annealing on the microstructure and hardness of Pb-free solders. Journal of Electronic Materials, 32, 1432–1440. https://doi.org/10.1007/s11664-003-0112-4
  • Lieberman, D.S., Wechsler, M.S., Read, T.A. 1955. Cubic to orthorhombic diffusionless phase change - Experimental and theoretical studies of AuCd. Journal of Applied Physics, 26, 473–484 . https://doi.org/10.1063/1.1722021
  • Mao, Z., Zhang, D.Z., Jiang, J., Fu, G., Zhang, P. 2018. Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze. Materials Science and Engineering: A, 721, 125–134. https://doi.org/10.1016/j.msea.2018.02.051
  • Mura, T., Mori, T., Kato, M. 1976. The elastic field caused by a general ellipsoidal inclusion and the application to martensite formation. Journal of the Mechanics and Physics of Solids, 24(5), 305–318. https://doi.org/10.1016/0022-5096(76)90028-4
  • Murnaghan, F. D. 1937. Finite deformations of an elastic solid. American Journal of Mathematics, 59(2), 235-260. Nishiyama, Z. 2012. Martensitic transformation. Elsevier, Academic press Inc. Edited by Morris E. Fine, M. Meshii, C.M. Wayman. London.
  • Pandey, D., Ojha, S.N., Tiwari, R.S. 1991. Martensitic transformation in Cu─Sn alloys. Phase Transitions, 35, 1–26. https://doi.org/10.1080/01411599108205203
  • Shakarappa, R., Arul Peter, A., Mallikarjuna, M.V., Padmanabhan, S., Rathna Kumar, P. 2023. Influence of aluminium oxide and graphene on the mechanical properties of Cu-Sn alloy composites. Materials Today: Proceedings, 92, 880–885. https://doi.org/10.1016/j.matpr.2023.04.458
  • Shibata-Yanagisawa, M., Kato, M. 1990. Crystallographic Analysis of Cubic (Tetragonal) to Monoclinic Martensitic Transformations based on the Infinitesimal Deformity Approach. Materials Transactions, JIM, 31, 18–24. https://doi.org/10.2320/matertrans1989.31.18
  • So, S.-M., Kim, K.-Y., Lee, S.-J., Yu, Y.-J., Lim, H.-A., Oh, M.-S. 2020. Effects of Sn content and hot deformity on microstructure and mechanical properties of binary high Sn content Cu–Sn alloys. Materials Science and Engineering: A, 796, 140054. https://doi.org/10.1016/j.msea.2020.140054
  • Watanabe, M., Wayman, C.M. 1971. Crystallography of the martensite transformation in Fe−Al−C alloys. Metallurgical Transactions, 2, 2229–2236. https://doi.org/10.1007/BF02917555
  • Wayman, C.M. 1972. Crystallographic theories of martensitic transformations. Journal of the Less Common Metals, 28, 97–105. https://doi.org/10.1016/0022-5088(72)90172-5
  • Wang, Q., Zhou, R., Li, Y., Geng, B. 2020. Characteristics of dynamic recrystallization in semi-solid CuSn10P1 alloy during hot deformity. Materials Characterization, 159, 109996. https://doi.org/10.1016/j.matchar.2019.109996
  • Zhang, J., Cui, X., Wang, Y., Yang, Y., Lin, J. 2014. Characteristics of ultrahigh electrical conductivity for Cu–Sn alloys. Materials Science Technology, 30, 506–509. https://doi.org/10.1179/1743284713Y.0000000370 Zhang, M.X., Kelly, P.M. 2009. Crystallographic features of phase transformations in solids. Progress in Materials Science, 54, 1101–1170. https://doi.org/10.1016/j.pmatsci.2009.06.001
  • Zhai, W., Wang, W.L., Geng, D.L., Wei, B. 2012. A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu-Sn alloys. Acta Materialia, 60, 6518–6527. https://doi.org/10.1016/j.actamat.2012.08.013

Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy

Yıl 2025, Cilt: 25 Sayı: 2, 279 - 286

Öz

Cu-Sn ingot having compositions of Cu -14.5 % at. Sn was prepared by arc melting high–purity (at least 99.9%). The ingot was annealed in an Argonne atmosphere at 1050 °C for 50 h to obtain the β-phase. The austenitic sample was cooled in liquid nitrogen and the martensite phase transformation occurred.
Using the rigorous version of the infinitesimal deformation approach in the present work, the crystallographical parameters such as habit plane normal, amount of lattice invariant shear, magnitude of the total shape deformation, orientation relationships between the austenite and martensite phase, etc. associated with Cu-Sn alloy have been predicted from a knowledge only of the lattice parameters of the austenite and final martensite phases. The lattice parameters of the austenite and martensite phases are determined from the experimental studies on Cu-Sn alloy in the present study and the crystallographic features of the martensitic transformation are compared with the values calculated using the approach. The agreement between the calculated and the observed results for this alloy system as well as the others is strong evidence for the applicability of the approach presented in this study to the cubic to the orthorhombic phase transformation observed in this alloy system.

Kaynakça

  • Armağan, O., Kırındı T. 2021. Effect of Mn ammount on phase transformations and magnetic properties in Fe-Mn-Mo-Si alloys. Archives of Metallurgy and Materials, 66(1), 259-266. https://doi.org/10.24425/amm.2021.134783
  • Armağan, O., Sarı, U., Çağrı, Y., Kırındı T. 2017. Effects of thermal and deformation on martensitic transformation and magnetic properties in Fe-17%Mn-4.5%X (X = Co and Mo) alloys. Micron, 103, 34-44. https://doi.org/10.1016/j.micron.2017.09.007
  • Arslan, H. 2014. Structural Evolution Properties of Cu-25 wt %Sn Alloy During Ball Milling. Journal of Advanced Thermal Science Research, 1(1), 25–31. http://dx.doi.org/10.15377/2409-5826.2014.01.01.4
  • Bowles, J., Dunne, D. 1969. The role of plastic accommodation in the (225) martensite transformation. Acta Metallurgica, 17, 677–685. https://doi.org/10.1016/0001-6160(69)90128-X
  • Bowles, J., Mackenzie, J. 1954. The crystallography of martensite transformations III. Face-centred cubic to body-centred tetragonal transformations. Acta Metallurgica, 2, 224–234. https://doi.org/10.1016/0001-6160(54)90102-9
  • Christian, J.W. 2002. Characteristics of Martensitic Transformations. The Theory of Transformations in Metals and Alloys, 961–991. Pergamon Oxford.
  • Ebrahimi, M., Attarilar, S., Shaeri, M.H., Gode, C., Armoon, H., Djavanroodi, F. 2019. An investigation into the effect of alloying elements on corrosion behavior of severely deformed Cu-Sn alloys by equal channel angular pressing. Archives of Civil and Mechanical Engineering, 19, 842–850. https://doi.org/10.1016/j.acme.2019.03.009
  • Efsic, E.J., Wayman, C.M. 1967. Crystallography of the fcc to bcc martensitic transformation in an iron-platinum alloy. AIME Met. Soc. Trans, 239, 873–882.
  • Emadi, F., Vuorinen, V., Mertin, S., Widell, K., Paulasto-Kröckel, M. 2022. Microstructural and mechanical characterization of Cu/Sn SLID bonding utilizing Co as contact metallization layer. Journal of Alloys and Compounds, 929, 167228. https://doi.org/10.1016/j.jallcom.2022.167228
  • Hui, J., Feng, Z., Fan, W., Yuan, X. 2018. The influence of power spinning and annealing temperature on microstructures and properties of Cu-Sn alloy. Materials Characterization, 144, 611–620. https://doi.org/10.1016/j.matchar.2018.08.015
  • Karthik, M., Abhinav, J., Shankar, K. V. 2021. Morphological and Mechanical Behaviour of Cu–Sn Alloys—A review. Metals and Materials International, 27, 1915–1946. https://doi.org/10.1007/s12540-020-00899-z
  • Kato, M., Shibata-Yanagisawa, M. 1990. Infinitesimal deformity approach of the phenomenological crystallographic theory of martensitic transformations. Journal of Materials Science, 25, 194–202. https://doi.org/10.1007/BF00544207
  • Kelly, P.M. 2003. Martensite crystallography—the apparent controversy between the infinitesimal deformity approach and the phenomenological theory of martensitic transformations. Metallurgical and Materials Transactions A, 34, 1783–1786. https://doi.org/10.1007/s11661-003-0144-7
  • Kelly, P.M. 2006. Martensite crystallography—The role of the shape strain. Materials Science and Engineering: A, 438, 43–47. https://doi.org/10.1016/j.msea.2006.02.065
  • Kennon, N. 1972. The complementary strain for the b.c.c. to orthorhombic martensite transformation in Cu-Sn alloys. Acta Metallurgica, 20, 5–10. https://doi.org/10.1016/0001-6160(72)90107-1
  • Kennon, N., Bowles, J. 1969. The crystallography of the B.C.C. to orthorhombic γ′1 martensite transformation in copper-tin alloys. Acta Metallurgica, 17, 373–380. https://doi.org/10.1016/0001-6160(69)90017-0
  • Khachaturyan, A.G., Shatalov, G.A. 1969. Theory of Macroscopic Periodicity for a Phase Transition in the Solid State. Journal of Experimental and Theoretical Physics, 29(3), 557-561.
  • Lauro, P., Kang, S.K., Choi, W.K., Shih, D.-Y. 2003. Effects of mechanical deformity and annealing on the microstructure and hardness of Pb-free solders. Journal of Electronic Materials, 32, 1432–1440. https://doi.org/10.1007/s11664-003-0112-4
  • Lieberman, D.S., Wechsler, M.S., Read, T.A. 1955. Cubic to orthorhombic diffusionless phase change - Experimental and theoretical studies of AuCd. Journal of Applied Physics, 26, 473–484 . https://doi.org/10.1063/1.1722021
  • Mao, Z., Zhang, D.Z., Jiang, J., Fu, G., Zhang, P. 2018. Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze. Materials Science and Engineering: A, 721, 125–134. https://doi.org/10.1016/j.msea.2018.02.051
  • Mura, T., Mori, T., Kato, M. 1976. The elastic field caused by a general ellipsoidal inclusion and the application to martensite formation. Journal of the Mechanics and Physics of Solids, 24(5), 305–318. https://doi.org/10.1016/0022-5096(76)90028-4
  • Murnaghan, F. D. 1937. Finite deformations of an elastic solid. American Journal of Mathematics, 59(2), 235-260. Nishiyama, Z. 2012. Martensitic transformation. Elsevier, Academic press Inc. Edited by Morris E. Fine, M. Meshii, C.M. Wayman. London.
  • Pandey, D., Ojha, S.N., Tiwari, R.S. 1991. Martensitic transformation in Cu─Sn alloys. Phase Transitions, 35, 1–26. https://doi.org/10.1080/01411599108205203
  • Shakarappa, R., Arul Peter, A., Mallikarjuna, M.V., Padmanabhan, S., Rathna Kumar, P. 2023. Influence of aluminium oxide and graphene on the mechanical properties of Cu-Sn alloy composites. Materials Today: Proceedings, 92, 880–885. https://doi.org/10.1016/j.matpr.2023.04.458
  • Shibata-Yanagisawa, M., Kato, M. 1990. Crystallographic Analysis of Cubic (Tetragonal) to Monoclinic Martensitic Transformations based on the Infinitesimal Deformity Approach. Materials Transactions, JIM, 31, 18–24. https://doi.org/10.2320/matertrans1989.31.18
  • So, S.-M., Kim, K.-Y., Lee, S.-J., Yu, Y.-J., Lim, H.-A., Oh, M.-S. 2020. Effects of Sn content and hot deformity on microstructure and mechanical properties of binary high Sn content Cu–Sn alloys. Materials Science and Engineering: A, 796, 140054. https://doi.org/10.1016/j.msea.2020.140054
  • Watanabe, M., Wayman, C.M. 1971. Crystallography of the martensite transformation in Fe−Al−C alloys. Metallurgical Transactions, 2, 2229–2236. https://doi.org/10.1007/BF02917555
  • Wayman, C.M. 1972. Crystallographic theories of martensitic transformations. Journal of the Less Common Metals, 28, 97–105. https://doi.org/10.1016/0022-5088(72)90172-5
  • Wang, Q., Zhou, R., Li, Y., Geng, B. 2020. Characteristics of dynamic recrystallization in semi-solid CuSn10P1 alloy during hot deformity. Materials Characterization, 159, 109996. https://doi.org/10.1016/j.matchar.2019.109996
  • Zhang, J., Cui, X., Wang, Y., Yang, Y., Lin, J. 2014. Characteristics of ultrahigh electrical conductivity for Cu–Sn alloys. Materials Science Technology, 30, 506–509. https://doi.org/10.1179/1743284713Y.0000000370 Zhang, M.X., Kelly, P.M. 2009. Crystallographic features of phase transformations in solids. Progress in Materials Science, 54, 1101–1170. https://doi.org/10.1016/j.pmatsci.2009.06.001
  • Zhai, W., Wang, W.L., Geng, D.L., Wei, B. 2012. A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu-Sn alloys. Acta Materialia, 60, 6518–6527. https://doi.org/10.1016/j.actamat.2012.08.013
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik, Malzeme Karekterizasyonu
Bölüm Makaleler
Yazarlar

Hüseyin Arslan 0000-0003-1509-7725

Erken Görünüm Tarihi 28 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 1 Ağustos 2024
Kabul Tarihi 4 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 2

Kaynak Göster

APA Arslan, H. (2025). Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(2), 279-286.
AMA Arslan H. Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Mart 2025;25(2):279-286.
Chicago Arslan, Hüseyin. “Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 2 (Mart 2025): 279-86.
EndNote Arslan H (01 Mart 2025) Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 2 279–286.
IEEE H. Arslan, “Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 2, ss. 279–286, 2025.
ISNAD Arslan, Hüseyin. “Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/2 (Mart 2025), 279-286.
JAMA Arslan H. Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:279–286.
MLA Arslan, Hüseyin. “Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 2, 2025, ss. 279-86.
Vancouver Arslan H. Crystallographical Analysis of Martensitic Transformation Observed in Cu-Sn Alloy. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(2):279-86.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.