Araştırma Makalesi
BibTex RIS Kaynak Göster

KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ

Yıl 2023, Cilt: 1 Sayı: 1, 15 - 22, 27.12.2023

Öz

Yara, kimyasal, mekanik veya termal hasar sonucu cilt yüzeyindeki doku bütünlüğünün bozulmasıyla meydana gelmektedir ve her an vücudumuzda komplikasyon yaratabilir. Yaranın hızlı bir şekilde tedavi edilebilmesi ve yaraların bakımı pansuman materyaline bağlı olarak değişmektedir. Elektro-eğirme yöntemi ile üretilen nanofiber yara örtüleri, yaraların hızlı iyileşmesi açısından umut verici bir yöntem haline gelmiştir. Nanofiber yara örtülerinde yer alan nano boyutlu lifler, hücre dışı matrikse benzerliklerinden dolayı ve ilaç/biyolojik ajan içerebileceğinden kaynaklı olarak yaraların iyileşmesi için uygun ortam sağladıkları için oldukça tercih edilen ideal bir tedavi yöntemidir. Bu çalışmada, aktif biyolojik ajanlar içeren Momordica charantia (kudret narı) yağı sayesinde yaraların iyileşmesini önemli ölçüde hızlandıran ve hasta refahını artıran polimer tabanlı nanofiber yara örtüsü geliştirilmesi amaçlanmıştır. Bunun için, Momordica charantia yağı polilaktikoglikolik asit içerisine enkapsüle edilerek, polietilen glikol tabanlı nanofiber yara örtüsü elektro-spreylenmiştir. Elde edilen nanofiber yara örtüsünün kimyasal yapısı ve morfolojisi için Fourier Dönüşümlü Kızılötesi (FTIR) ve Taramalı Elektron Mikroskobu (SEM) analizleri gerçekleştirilmiştir. Elde edilen nanofiber yara örtüsünün FTIR analizinde biyobozunur nanokapsüllerle geliştirilen nanofiber yara örtüsünün kimyasal bağları ayrıntılı bir şekilde gözlenmiştir. SEM analizinde ise eş boyutlu PLGA nanokapsüllerin elde edildiği ve kudret narı yağı ile kapsüllenen PLGA nanopartiküllerinin PEG nanosprey yapısı arasında homojen dağıldığı görülmüştür. Sonuç olarak yarayı enfeksiyonlardan korumak, iyileşme sürecini hızlandırmak amacı ile geliştirilen nanofiber yara örtüsü geleneksel aromatik bitkisel yağ tedavisi ile birleştirilerek entegre polimerik yara örtü malzemesi olarak kullanılabilecek önemli bir adaydır.

Destekleyen Kurum

Selçuk Üniversitesi BAP Koordinatörlüğü

Proje Numarası

23402001

Teşekkür

Selçuk Üniversitesi Bilimsel Araştırma Projeleri Birimine [Proje no:23402001] destekleri için teşekkür ederiz.

Kaynakça

  • [1] Guo, S. and L.A. Dipietro, Factors affecting wound healing, J Dent Res, 89(3), 219-29, 2010.
  • [2] Karasu, A. and B. Bakir, Yara ve Yara İyileşmesi (Wound and Wound Healing), 36-43, 2008.
  • [3] Wang, P.-H., et al., Wound healing, Journal of the Chinese Medical Association, 81(2), 2018.
  • [4] Simões, D., et al., Recent advances on antimicrobial wound dressing: A review, Eur J Pharm Biopharm, 127, 130-141, 2018.
  • [5] Jiang, Z., et al., Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing, Pharmaceutics, 15(7), 1829, 2023.
  • [6] Homaeigohar, S. and A.R. Boccaccini, Antibacterial biohybrid nanofibers for wound dressings, Acta Biomaterialia, 107, 25-49, 2020.
  • [7] Wang, F., et al., Advances in Electrospinning of Natural Biomaterials for Wound Dressing, Journal of Nanomaterials, 2020, 8719859, 2020.
  • [8] Sarwar, M.N., et al., Electrospun PVA/CuONPs/Bitter Gourd Nanofibers with Improved Cytocompatibility and Antibacterial Properties: Application as Antibacterial Wound Dressing, Polymers, 14(7), 1361, 2022.
  • [9] Bhardwaj, N. and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances, 28(3), 325-347, 2010.
  • [10] Kim, J.I., et al., Electrospun propolis/polyurethane composite nanofibers for biomedical applications, Materials Science and Engineering: C, 44, 52-57, 2014.
  • [11] El-Attar, A.A., et al., Silver/Snail Mucous PVA Nanofibers: Electrospun Synthesis and Antibacterial and Wound Healing Activities, Membranes (Basel), 12(5), 2022.
  • [12] Liu, S.-J., et al., Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing, Journal of Membrane Science, 355(1), 53-59, 2010.
  • [13] Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers (Basel), 3(3), 1377-1397, 2011.
  • [14] Kikuchi, A., 4.17 Surface-Grafting Methods for Biomaterials, in Comprehensive Biomaterials II, P. Ducheyne, Editor. 2017, Elsevier: Oxford. p. 292-302.
  • [15] Badi, N., Non-linear PEG-based thermoresponsive polymer systems, Progress in Polymer Science, 66, 54-79, 2017.
  • [16] Rahmani, S., et al., Chapter 7 - Polymer nanocomposites for biomedical applications, in Fundamentals of Bionanomaterials, A. Barhoum, J. Jeevanandam, and M.K. Danquah, Editors. 2022, Elsevier. p. 175-215.
  • [17] Wang, F., et al., Preparation, Characterization and Properties of Porous PLA/PEG/Curcumin Composite Nanofibers for Antibacterial Application, Nanomaterials (Basel), 9(4), 2019.
  • [18] Dandawate, P.R., et al., Bitter melon: a panacea for inflammation and cancer, Chin J Nat Med, 14(2), 81-100, 2016.
  • [19] Alippilakkotte, S., S. Kumar, and L. Sreejith, Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 771-782, 2017.
  • [20] Chao, C.-Y., et al., Anti-Inflammatory Effect of Momordica Charantia in Sepsis Mice, Molecules, 19(8), 12777-12788, 2014.
  • [21] Pişkin, A., et al., The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin, Journal of Dermatological Treatment, 25(4), 350-357, 2014.
  • [22] Ebadollahi, A., et al., Nanoencapsulation of Acetamiprid by Sodium Alginate and Polyethylene Glycol Enhanced Its Insecticidal Efficiency, Nanomaterials, 12(17), 2971, 2022.
  • [23] Chen, S.H., et al., Electrospun Water-Borne Polyurethane Nanofibrous Membrane as a Barrier for Preventing Postoperative Peritendinous Adhesion, Int J Mol Sci, 20(7), 2019.
  • [24] Wang, F., et al., Preparation, Characterization and Properties of Porous PLA/PEG/Curcumin Composite Nanofibers for Antibacterial Application, Nanomaterials, 9(4), 508, 2019.
  • [25] Ghandforoushan, P., et al., Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro, Int J Biol Macromol, 201, 270-287, 2022.
  • [26] Safonova, L., et al., Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats, Pharmaceutics, 13(10), 2021.
  • [27] Barbosa, F., et al., Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications, Int J Mol Sci, 24(17), 2023.
  • [28] Luraghi, A., F. Peri, and L. Moroni, Electrospinning for drug delivery applications: A review, J Control Release, 334, 463-484, 2021.
  • [29] Hashmi, M., S. Ullah, and I.S. Kim, Electrospun Momordica charantia incorporated polyvinyl alcohol (PVA) nanofibers for antibacterial applications, Materials Today Communications, 24, 101161, 2020.
  • [30] Jia, S., et al., Recent Advances in Momordica charantia: Functional Components and Biological Activities, International Journal of Molecular Sciences, 18(12), 2555, 2017.
  • [31] Hussan, F., et al., Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression, J Wound Care, 23(8), 400, 402, 404-7, 2014.

DESIGN AND PRODUCTION OF MOMORDICA CHARANTIA OIL LOADED BIODEGRADABLE NANOCAPSULES FOR WOUND HEALING PURPOSES

Yıl 2023, Cilt: 1 Sayı: 1, 15 - 22, 27.12.2023

Öz

Wound formation occurs as a result of chemical, chemical, mechanical, or thermal damage, leading to the disruption of tissue integrity on the skin surface, and can potentially create complications in our body at any moment. The rapid treatment of wounds and the care of wounds depend on the wound dressing material. Nanofiber wound dressings produced by the electrospinning method have become a promising method for the rapid healing of wounds. The nano-sized fibers in nanofiber wound dressings are highly preferred as an ideal treatment method due to their similarities to the extracellular matrix and their ability to contain drugs/biological agents, providing a suitable environment for wound healing. In this study, the aim was to develop a polymer-based nanofiber wound dressing that significantly accelerates the healing of wounds and enhances patient well-being, utilizing Momordica charantia (bitter melon) oil containing active biological agents. For this purpose, Momordica charantia oil was encapsulated into poly(lactic-co-glycolic acid) and electrospun into a polyethylene glycol-based nanofiber wound dressing. Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM) analyses were performed to determine the chemical structure and morphology of the obtained nanofiber wound dressing. In the FTIR analysis of the nanofiber wound dressing developed with biodegradable nanocapsules, the chemical bonds of the nanofiber wound dressing were observed in detail. In the SEM analysis, uniformly sized PLGA nanocapsules were obtained, and it was observed that PLGA nanoparticles encapsulated with bitter melon oil were homogeneously distributed among the PEG nanospray structure. In conclusion, the nanofiber wound dressing developed to protect wounds from infections and expedite the healing process is an important candidate as an integrated polymeric wound dressing material, combined with traditional aromatic herbal oil treatment.

Proje Numarası

23402001

Kaynakça

  • [1] Guo, S. and L.A. Dipietro, Factors affecting wound healing, J Dent Res, 89(3), 219-29, 2010.
  • [2] Karasu, A. and B. Bakir, Yara ve Yara İyileşmesi (Wound and Wound Healing), 36-43, 2008.
  • [3] Wang, P.-H., et al., Wound healing, Journal of the Chinese Medical Association, 81(2), 2018.
  • [4] Simões, D., et al., Recent advances on antimicrobial wound dressing: A review, Eur J Pharm Biopharm, 127, 130-141, 2018.
  • [5] Jiang, Z., et al., Nanofiber Scaffolds as Drug Delivery Systems Promoting Wound Healing, Pharmaceutics, 15(7), 1829, 2023.
  • [6] Homaeigohar, S. and A.R. Boccaccini, Antibacterial biohybrid nanofibers for wound dressings, Acta Biomaterialia, 107, 25-49, 2020.
  • [7] Wang, F., et al., Advances in Electrospinning of Natural Biomaterials for Wound Dressing, Journal of Nanomaterials, 2020, 8719859, 2020.
  • [8] Sarwar, M.N., et al., Electrospun PVA/CuONPs/Bitter Gourd Nanofibers with Improved Cytocompatibility and Antibacterial Properties: Application as Antibacterial Wound Dressing, Polymers, 14(7), 1361, 2022.
  • [9] Bhardwaj, N. and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances, 28(3), 325-347, 2010.
  • [10] Kim, J.I., et al., Electrospun propolis/polyurethane composite nanofibers for biomedical applications, Materials Science and Engineering: C, 44, 52-57, 2014.
  • [11] El-Attar, A.A., et al., Silver/Snail Mucous PVA Nanofibers: Electrospun Synthesis and Antibacterial and Wound Healing Activities, Membranes (Basel), 12(5), 2022.
  • [12] Liu, S.-J., et al., Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing, Journal of Membrane Science, 355(1), 53-59, 2010.
  • [13] Makadia, H.K. and S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier, Polymers (Basel), 3(3), 1377-1397, 2011.
  • [14] Kikuchi, A., 4.17 Surface-Grafting Methods for Biomaterials, in Comprehensive Biomaterials II, P. Ducheyne, Editor. 2017, Elsevier: Oxford. p. 292-302.
  • [15] Badi, N., Non-linear PEG-based thermoresponsive polymer systems, Progress in Polymer Science, 66, 54-79, 2017.
  • [16] Rahmani, S., et al., Chapter 7 - Polymer nanocomposites for biomedical applications, in Fundamentals of Bionanomaterials, A. Barhoum, J. Jeevanandam, and M.K. Danquah, Editors. 2022, Elsevier. p. 175-215.
  • [17] Wang, F., et al., Preparation, Characterization and Properties of Porous PLA/PEG/Curcumin Composite Nanofibers for Antibacterial Application, Nanomaterials (Basel), 9(4), 2019.
  • [18] Dandawate, P.R., et al., Bitter melon: a panacea for inflammation and cancer, Chin J Nat Med, 14(2), 81-100, 2016.
  • [19] Alippilakkotte, S., S. Kumar, and L. Sreejith, Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 771-782, 2017.
  • [20] Chao, C.-Y., et al., Anti-Inflammatory Effect of Momordica Charantia in Sepsis Mice, Molecules, 19(8), 12777-12788, 2014.
  • [21] Pişkin, A., et al., The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin, Journal of Dermatological Treatment, 25(4), 350-357, 2014.
  • [22] Ebadollahi, A., et al., Nanoencapsulation of Acetamiprid by Sodium Alginate and Polyethylene Glycol Enhanced Its Insecticidal Efficiency, Nanomaterials, 12(17), 2971, 2022.
  • [23] Chen, S.H., et al., Electrospun Water-Borne Polyurethane Nanofibrous Membrane as a Barrier for Preventing Postoperative Peritendinous Adhesion, Int J Mol Sci, 20(7), 2019.
  • [24] Wang, F., et al., Preparation, Characterization and Properties of Porous PLA/PEG/Curcumin Composite Nanofibers for Antibacterial Application, Nanomaterials, 9(4), 508, 2019.
  • [25] Ghandforoushan, P., et al., Novel nanocomposite scaffold based on gelatin/PLGA-PEG-PLGA hydrogels embedded with TGF-β1 for chondrogenic differentiation of human dental pulp stem cells in vitro, Int J Biol Macromol, 201, 270-287, 2022.
  • [26] Safonova, L., et al., Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats, Pharmaceutics, 13(10), 2021.
  • [27] Barbosa, F., et al., Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications, Int J Mol Sci, 24(17), 2023.
  • [28] Luraghi, A., F. Peri, and L. Moroni, Electrospinning for drug delivery applications: A review, J Control Release, 334, 463-484, 2021.
  • [29] Hashmi, M., S. Ullah, and I.S. Kim, Electrospun Momordica charantia incorporated polyvinyl alcohol (PVA) nanofibers for antibacterial applications, Materials Today Communications, 24, 101161, 2020.
  • [30] Jia, S., et al., Recent Advances in Momordica charantia: Functional Components and Biological Activities, International Journal of Molecular Sciences, 18(12), 2555, 2017.
  • [31] Hussan, F., et al., Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression, J Wound Care, 23(8), 400, 402, 404-7, 2014.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyofabrikasyon
Bölüm Araştırma Makalesi
Yazarlar

Elif Bozkır 0009-0006-2072-6265

Fatma İnan 0009-0001-9022-9065

İrem Mukaddes Bilgiseven 0000-0002-3162-8381

Serdar Karakurt 0000-0002-4449-6103

Proje Numarası 23402001
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 2 Kasım 2023
Kabul Tarihi 19 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 1

Kaynak Göster

APA Bozkır, E., İnan, F., Bilgiseven, İ. M., Karakurt, S. (2023). KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ. Akdeniz Mühendislik Dergisi, 1(1), 15-22.
AMA Bozkır E, İnan F, Bilgiseven İM, Karakurt S. KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ. AKUJE. Aralık 2023;1(1):15-22.
Chicago Bozkır, Elif, Fatma İnan, İrem Mukaddes Bilgiseven, ve Serdar Karakurt. “KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ”. Akdeniz Mühendislik Dergisi 1, sy. 1 (Aralık 2023): 15-22.
EndNote Bozkır E, İnan F, Bilgiseven İM, Karakurt S (01 Aralık 2023) KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ. Akdeniz Mühendislik Dergisi 1 1 15–22.
IEEE E. Bozkır, F. İnan, İ. M. Bilgiseven, ve S. Karakurt, “KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ”, AKUJE, c. 1, sy. 1, ss. 15–22, 2023.
ISNAD Bozkır, Elif vd. “KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ”. Akdeniz Mühendislik Dergisi 1/1 (Aralık 2023), 15-22.
JAMA Bozkır E, İnan F, Bilgiseven İM, Karakurt S. KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ. AKUJE. 2023;1:15–22.
MLA Bozkır, Elif vd. “KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ”. Akdeniz Mühendislik Dergisi, c. 1, sy. 1, 2023, ss. 15-22.
Vancouver Bozkır E, İnan F, Bilgiseven İM, Karakurt S. KUDRET NARI YAĞI YÜKLÜ BİYOBOZUNUR NANOKAPSÜLLERİN YARA ÖRTÜSÜ AMAÇLI DİZAYNI VE ÜRETİMİ. AKUJE. 2023;1(1):15-22.