Araştırma Makalesi
BibTex RIS Kaynak Göster

On Some Properties of m  -Statistical Convergence in a Paranormed Space

Yıl 2019, Cilt: 1 Sayı: 1, 40 - 47, 15.01.2019

Öz

In this study, we introduce the concepts of strongly   m  ,p -Cesàro summability, m  -statistical Cauchy sequence and m  -statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them. Fast [1] and Steinhaus [2] introduced the concept of statistical convergence for sequences of real numbers. Several authors studied this concept with related topics [3-5]. The asymptotic density of K N  is defined as,   (K) lim k n : k K  n     where be a subset of the set of natural numbers and denoted by  K. . indicates the cardinality of the enclosed set. A sequence xk  is called statistically covergent to provided that  k  n lim k n х L 0  n       for each  0 . It is denoted by lim k st x L    . A sequence хk  is called statistically Cauchy sequence provided that there exist a number N N( )   such that

Kaynakça

  • 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
  • 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
  • 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
  • 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
  • 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
  • 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
  • 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
  • 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
  • 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
  • 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
  • 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
  • 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
  • 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)

On Some Properties of m  -Statistical Convergence in a Paranormed Space

Yıl 2019, Cilt: 1 Sayı: 1, 40 - 47, 15.01.2019

Öz

In this study, we introduce the concepts of strongly  ($\Delta ^{m}$,p)-Cesàro summability,  $\Delta ^{m}-statistical Cauchy sequence and  $\Delta ^{m}-statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them.

Kaynakça

  • 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
  • 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
  • 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
  • 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
  • 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
  • 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
  • 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
  • 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
  • 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
  • 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
  • 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
  • 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
  • 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
  • 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çiğdem Bektaş

Emine Özçelik Bu kişi benim

Yayımlanma Tarihi 15 Ocak 2019
Gönderilme Tarihi 31 Ağustos 2018
Kabul Tarihi 3 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Bektaş, Ç., & Özçelik, E. (2019). On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi, 1(1), 40-47.
AMA Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. Ocak 2019;1(1):40-47.
Chicago Bektaş, Çiğdem, ve Emine Özçelik. “On Some Properties of M  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi 1, sy. 1 (Ocak 2019): 40-47.
EndNote Bektaş Ç, Özçelik E (01 Ocak 2019) On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi 1 1 40–47.
IEEE Ç. Bektaş ve E. Özçelik, “On Some Properties of m  -Statistical Convergence in a Paranormed Space”, ALKÜ Fen Bilimleri Dergisi, c. 1, sy. 1, ss. 40–47, 2019.
ISNAD Bektaş, Çiğdem - Özçelik, Emine. “On Some Properties of M  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi 1/1 (Ocak 2019), 40-47.
JAMA Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. 2019;1:40–47.
MLA Bektaş, Çiğdem ve Emine Özçelik. “On Some Properties of M  -Statistical Convergence in a Paranormed Space”. ALKÜ Fen Bilimleri Dergisi, c. 1, sy. 1, 2019, ss. 40-47.
Vancouver Bektaş Ç, Özçelik E. On Some Properties of m  -Statistical Convergence in a Paranormed Space. ALKÜ Fen Bilimleri Dergisi. 2019;1(1):40-7.