On Some Properties of m -Statistical Convergence in a Paranormed Space
Yıl 2019,
Cilt: 1 Sayı: 1, 40 - 47, 15.01.2019
Çiğdem Bektaş
,
Emine Özçelik
Öz
In this study, we introduce the concepts of strongly m ,p -Cesàro summability, m -statistical Cauchy sequence and m -statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them. Fast [1] and Steinhaus [2] introduced the concept of statistical convergence for sequences of real numbers. Several authors studied this concept with related topics [3-5]. The asymptotic density of K N is defined as, n 1 (K) lim k n : k K n where K be a subset of the set of natural numbers N and denoted by K. . indicates the cardinality of the enclosed set. A sequence xk is called statistically covergent to L provided that k n 1 lim k n х L 0 n for each 0 . It is denoted by lim k k st x L . A sequence хk is called statistically Cauchy sequence provided that there exist a number N N( ) such that
Kaynakça
- 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
- 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
- 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
- 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
- 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
- 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
- 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
- 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
- 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
- 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
- 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
- 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
- 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
- 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)
On Some Properties of m -Statistical Convergence in a Paranormed Space
Yıl 2019,
Cilt: 1 Sayı: 1, 40 - 47, 15.01.2019
Çiğdem Bektaş
,
Emine Özçelik
Öz
In this study, we introduce the concepts of strongly ($\Delta ^{m}$,p)-Cesàro summability, $\Delta ^{m}-statistical Cauchy sequence and $\Delta ^{m}-statistical convergence in a paronormed space. We give some certain properties of these concepts and some inclusion relations between them.
Kaynakça
- 1. Fast, H., Sur la convergence statistique, Colloq. Math., 2, 241-244 (1951)
- 2. Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2, 73-74 (1951)
- 3. Fridy, J. A., On statistical convergence, Analysis, 5, 301-313 (1985)
- 4. Šalát, T., On statisticaly convergent sequences of real numbers, Math Slovaca, 30, 139-150 (1980)
- 5. Kolk, E., The Statistical convergence in Banach spaces, Tartu Ül. Toimetised, 928, 41-52 (1991)
- 6. Alotaibi, A., Alroqi, M. A., Statistical convergence in a paranormed space, J. Inequal. Appl., 2012, 2012:39, 6 pp.
- 7. Nakano, H., Concave modulars, J. Math. Soc. Japan 5(1953), 29-49.
- 8. Mohammed, A., Mursaleen, M., λ-statistical convergence in paranormed space, Abstr. Appl. Anal. 2013, Art. ID 264520, 5 pp.
- 9. Çolak, R., Bektaş, Ç. A., Altınok, H., Ercan, S., On inclusion relations between some sequence spaces, Int. J. Anal. 2016, Art. ID 7283527, 4 pp.
- 10. Ercan, S., Altın, Y., Bektaş, Ç., On weak lambda-Statistical convergence of order alpha, U.P.B. Sci. Bull., Series A, 80(2), 215-226 (2018)
- 11. Et, M., Çolak, R., On some generalized difference sequence spaces, Soochow Journal of Mathematics, 21(4) 377-386 (1995).
- 12. Ercan, S., Bektaş, Ç., Some generalized difference sequence spaces of non absolute type, General Mahematics Notes, 27(2), 37-46 (2015).
- 13. F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monograph, İstanbul-2012, ISBN: 978-1-60805-420-6.
- 14. Ercan, S., Some Cesàro-type summability and statistical convergence of sequences generated by fractional difference operator, AKU J. Sci. Eng., 18 (2018) 011302 (125-130)