Production of waste polystyrene-based composites and evaluation as corrosion inhibitor for rebar coating
Yıl 2020,
Cilt: 2 Sayı: 1, 16 - 25, 31.03.2020
Heydar Dehghanpour
,
Enes Baş
,
Nihan Akçaer
Kemalettin Yılmaz
Öz
Corrosion is one of the most effective structural
damages in rebar reinforced structural elements. Different methods are applied
to protect concrete structures from corrosion. In this study, in order to
prevent rebar corrosion, it has aimed to coating recycled polystyrene based
composite materials and to examine them with electrical methods. The matrix element in
the composites has obtained by dissolving the waste polystyrene foam material
in benzine. Carbon, carbon fiber and standard sand were used as additives. Rebar reinforced
cylinder concrete specimens, which completed their 28-day age in the curing
pool, were subjected to accelerating corrosion by applying 70 Volt voltage in
3% NaCl water solution for 48 hours.
Anode-cathode and four-probe conductivity measurement
tests were performed to determine the corrosion condition of the samples. Splitting tensile
test has been performed on the same samples. According to the results, it was found that although
the Splitting tensile strength of coated rebar reinforced concrete samples did
not change significantly compared to the control sample, all the coatings were
advantageous in terms of corrosion prevention. It was also has found that there was good adherence
between most rebar and concrete, as understood in the splitting tensile test.
Kaynakça
- 1. Polder, R.B., Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Construction and building materials, 2001. 15(2-3): p. 125-131.
- 2. Delikanlı, F., Donatılı Betonda Korozyon Hasarı ve Giderilme Yolları. 2001, Fen Bilimleri Enstitüsü.
- 3. de Kayser Ortolan, V., Hilgert, T., Howland, J.J., Silva Oliveira, L.F., and Fonseca Tutikian, B., Comparative assessment of corrosion of concrete reinforced with unprotected steel and hot-dip galvanized steel. 2017.
- 4. Baltazar-Zamora, M., Bandala, E., Tello, M., Hurtado, G., Coca, F., Cedano, A., Barrios, C., Nuñez, R., Zambrano, P., and Tiburcio, C., Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 2012. 7: p. 2997-3007.
- 5. Polder, R., Andrade, C., Elsener, B., Vennesland, Ø., Gulikers, J., Weidert, R., and Raupach, M., Test methods for on site measurement of resistivity of concrete. Materials and Structures, 2000. 33(10): p. 603-611.
- 6. Glass, G., Page, C., and Short, N., Factors affecting the corrosion rate of steel in carbonated mortars. Corrosion Science, 1991. 32(12): p. 1283-1294.
- 7. Graeff, Â.G., Avaliação experimental e modelagem dos efeitos estruturais da propagação da corrosão em elementos de concreto armado. 2007.
- 8. Lima, R.C.A.d., Investigação do comportamento de concretos em temperaturas elevadas. 2005.
- 9. Torres, A., Avaliação da sensibilidade do ensaio CAIM-corrosão acelerado por imersão modificada-frente ao processo de corrosão. Porto Alegre: Ppgec/Ufrgs, 2006.
- 10. Tutikian, B.F. and Ortolan, V., Comparação da resistência à compressão, da perda de massa e visual entre inibidores de corrosão para prismas de concreto armado. Ciência & Engenharia, 2014. 23(1): p. 01-08.
- 11. Polder, R.B. and Peelen, W.H., Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cement and Concrete Composites, 2002. 24(5): p. 427-435.
- 12. Raupach, M., Chloride-induced macrocell corrosion of steel in concrete—theoretical background and practical consequences. Construction and building materials, 1996. 10(5): p. 329-338.
- 13. Dunn, R.C., Ross, R.A., and Davis, G.D., Corrosion monitoring of steel reinforced concrete structures using embedded instrumentation. Corrosion 2010, 2010.
- 14. Pour-Ghaz, M., Isgor, O.B., and Ghods, P., The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development. Corrosion Science, 2009. 51(2): p. 415-425.
- 15. Dehghanpour, H. and Yılmaz, K., Mechanical and Impact Behavior on Recycled Steel Fiber Reinforced Cementitious Mortars Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 2018. 39(3).
- 16. Dehghanpour, H. and Yılmaz, K., Evaluatıon and Investıgatıon of Waste Glass Aggregates and Powders in Archıtectural Mortars. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 2019. 44(4).
- 17. Dehghanpour, H., Yilmaz, K., and Ipek, M., Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Construction and Building Materials, 2019. 221: p. 109-121.
- 18. Dehghanpour, H. and Yılmaz, K., Microstructure Characterization of Nano Carbon Black Obtained by Combustion Method for Use in Concrete, in ISLAC'18. 2018.
- 19. Demirel, B. and Gönen, T., Karbon Fiber Takviyeli Betonda Farkli Fiber Boyunun Kapilariteye Etkisi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 2007. 6(1): p. 12-15.
- 20. Chan, S.Y., Peng, G.-f., and Chan, J.K., Comparison between high strength concrete and normal strength concrete subjected to high temperature. Materials and Structures, 1996. 29(10): p. 616.
Production of waste polystyrene-based composites and evaluation as corrosion inhibitor for rebar coating
Yıl 2020,
Cilt: 2 Sayı: 1, 16 - 25, 31.03.2020
Heydar Dehghanpour
,
Enes Baş
,
Nihan Akçaer
Kemalettin Yılmaz
Öz
Korozyon donatı takviyeli yapı elemanlarında en etkili yapısal hasarlardan biridir. Beton yapılarını korozyondan korumak için farklı yöntemler uygulanmaktadır. Bu çalışmada, donatı korozyonunu önlemek için geri dönüşümlü polistiren esaslı kompozit malzemelerin kaplanması ve elektriksel yöntemlerle incelenmesi amaçlanmıştır. Kompozitlerdeki matris elemanı, atık polistiren köpük malzemesinin benzinde çözülmesiyle elde edilmiştir. Katkı maddesi olarak karbon, karbon fiber ve standart kum kullanılmıştır. Kür havuzunda 28 günlük yaşlarını tamamlayan donatı takviyeli silindir beton numuneleri, 48 saat boyunca % 3 NaCl çözeltisinde 70 Volt voltaj uygulayarak korozyon hızlandırılmasına maruz bırakılmıştır. Numunelerin korozyon durumunu belirlemek için tek-elektrot ve dört-noktalı iletkenlik ölçüm testleri yapılmıştır. Aynı numuneler üzerinde yarmada çekme testi yapılmıştır. Elde edilen sonuçlara göre, kaplanmış donatı takviyeli numunelerin yarmada çekme mukavemeti kontrol numunesi ile karşılaştırıldığında önemli ölçüde değişmediyse de, tüm kaplanmış donatı takviyeli numunelerin korozyon durumları olumlu olarak tespit edilmiştir. Ayrıca, yarmada çekme test esnasında kaplanmış donatılar ve beton arasında iyi bir aderans olduğu tespit edilmiştir.
Kaynakça
- 1. Polder, R.B., Test methods for on site measurement of resistivity of concrete—a RILEM TC-154 technical recommendation. Construction and building materials, 2001. 15(2-3): p. 125-131.
- 2. Delikanlı, F., Donatılı Betonda Korozyon Hasarı ve Giderilme Yolları. 2001, Fen Bilimleri Enstitüsü.
- 3. de Kayser Ortolan, V., Hilgert, T., Howland, J.J., Silva Oliveira, L.F., and Fonseca Tutikian, B., Comparative assessment of corrosion of concrete reinforced with unprotected steel and hot-dip galvanized steel. 2017.
- 4. Baltazar-Zamora, M., Bandala, E., Tello, M., Hurtado, G., Coca, F., Cedano, A., Barrios, C., Nuñez, R., Zambrano, P., and Tiburcio, C., Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. International Journal of Electrochemical Science, 2012. 7: p. 2997-3007.
- 5. Polder, R., Andrade, C., Elsener, B., Vennesland, Ø., Gulikers, J., Weidert, R., and Raupach, M., Test methods for on site measurement of resistivity of concrete. Materials and Structures, 2000. 33(10): p. 603-611.
- 6. Glass, G., Page, C., and Short, N., Factors affecting the corrosion rate of steel in carbonated mortars. Corrosion Science, 1991. 32(12): p. 1283-1294.
- 7. Graeff, Â.G., Avaliação experimental e modelagem dos efeitos estruturais da propagação da corrosão em elementos de concreto armado. 2007.
- 8. Lima, R.C.A.d., Investigação do comportamento de concretos em temperaturas elevadas. 2005.
- 9. Torres, A., Avaliação da sensibilidade do ensaio CAIM-corrosão acelerado por imersão modificada-frente ao processo de corrosão. Porto Alegre: Ppgec/Ufrgs, 2006.
- 10. Tutikian, B.F. and Ortolan, V., Comparação da resistência à compressão, da perda de massa e visual entre inibidores de corrosão para prismas de concreto armado. Ciência & Engenharia, 2014. 23(1): p. 01-08.
- 11. Polder, R.B. and Peelen, W.H., Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cement and Concrete Composites, 2002. 24(5): p. 427-435.
- 12. Raupach, M., Chloride-induced macrocell corrosion of steel in concrete—theoretical background and practical consequences. Construction and building materials, 1996. 10(5): p. 329-338.
- 13. Dunn, R.C., Ross, R.A., and Davis, G.D., Corrosion monitoring of steel reinforced concrete structures using embedded instrumentation. Corrosion 2010, 2010.
- 14. Pour-Ghaz, M., Isgor, O.B., and Ghods, P., The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development. Corrosion Science, 2009. 51(2): p. 415-425.
- 15. Dehghanpour, H. and Yılmaz, K., Mechanical and Impact Behavior on Recycled Steel Fiber Reinforced Cementitious Mortars Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 2018. 39(3).
- 16. Dehghanpour, H. and Yılmaz, K., Evaluatıon and Investıgatıon of Waste Glass Aggregates and Powders in Archıtectural Mortars. Scientific Herald of the Voronezh State University of Architecture & Civil Engineering., 2019. 44(4).
- 17. Dehghanpour, H., Yilmaz, K., and Ipek, M., Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Construction and Building Materials, 2019. 221: p. 109-121.
- 18. Dehghanpour, H. and Yılmaz, K., Microstructure Characterization of Nano Carbon Black Obtained by Combustion Method for Use in Concrete, in ISLAC'18. 2018.
- 19. Demirel, B. and Gönen, T., Karbon Fiber Takviyeli Betonda Farkli Fiber Boyunun Kapilariteye Etkisi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 2007. 6(1): p. 12-15.
- 20. Chan, S.Y., Peng, G.-f., and Chan, J.K., Comparison between high strength concrete and normal strength concrete subjected to high temperature. Materials and Structures, 1996. 29(10): p. 616.