Saccharomyces Cerevisiae Sulu Lizatı ile Sentezlenen Çinko Oksit Nanopartiküllerinin In-Vitro Yara İyileşmesi Modelinde Etkilerinin İncelenmesi
Yıl 2023,
, 127 - 135, 31.01.2023
Ömer Erdoğan
,
Ozge Cevik
Öz
Amaç: Bu çalışmanın amacı hamur mayası (Saccharomyces cerevisiae) sulu lizatı ile sentezlenen çinko oksit nanopartiküllerinin (ZnONPs) L929 fare fibroblast hücreleri üzerindeki toksik ve yara iyileştirici etkilerini incelemektir.
Yöntem: Saccharomyces cerevisiae sulu lizatı kullanılarak çinko oksit nanopartikülleri mikrodalga yöntemiyle sentezlenmiştir. ZnONPs karakterizasyonu Ultraviyole-Görünür bölge spektroskopisi (UV-Vis), SEM ve Zeta sizer ile gerçekleştirilmiştir. 1, 10, 100, 1000 µg/mL konsantrasyondaki ZnONPs’lerin toksik davranışları ve yara iyileşmesi üzerindeki etkileri in-vitro olarak L929 hücrelerinde incelenmiştir.
Bulgular: UV spektrumunda ZnONPs’ye spesifik 360-380 nm’de keskin pik görülmüştür. Zeta analizinde ZnO nanopartiküllerinin ortalama boyutu 512.8±16 nm ve zeta yükü ise -30.38±3.12 mV olarak ölçülmüştür. ZnONPs uygulanan L929 hücrelerinin doza bağımlı olarak toksik etki göstermediği bulunmuştur. 10, 100 ve 1000 µg/mL ZnONPs uygulanan L929 hücrelerinin yara kapanması miktarında kontrol grubu hücrelerine göre anlamlı oranda artış tespit edilmiştir.
Sonuç: Saccharomyces cerevisiae sulu lizatı ile sentezlenen çinko oksit (ZnO) nanopartiküllerinin in-vitro yara iyileştirici etkileri bu nanopartiküllerin ilaç ve kozmetik endüstrisinde kullanılabilme potansiyeli olduğunu göstermektedir.
Kaynakça
- 1. Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., et al. (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PloS one, 14(6), e0216496. DOI: 10.1371/journal.pone.0216496
- 2. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications, 2018, 1062562. https://doi.org/10.1155/2018/1062562
- 3. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., et al. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters, 7(3), 219-242.
https://doi.org/10.1007/s40820-015-0040-x
- 4. Gupta, K., & Chundawat, T. S. (2020). Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass and Bioenergy, 143, 105840. DOI :
10.1016/j.biombioe.2020.105840
- 5. Abdelkader, D. H., Negm, W. A., Elekhnawy, E., Eliwa, D., Aldosari, B. N., & Almurshedi, A. S. (2022). Zinc oxide nanoparticles as potential delivery carrier: green synthesis by aspergillus niger endophytic fungus,
characterization, and ın vitro/ın vivo antibacterial activity. Pharmaceuticals, 15(9), 1057. DOI: 10.3390/ph15091057
- 6. Saravanakumar, K., Jeevithan, E., Hu, X., Chelliah, R., Oh, D. H., & Wang, M. H. (2020). Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles
conjugated with β-D-glucan from barley. Journal of Photochemistry and Photobiology B: Biology, 203, 111728. https://doi.org/10.1016/j.jphotobiol.2019.111728
- 7. Perli, T., Wronska, A. K., Ortiz‐Merino, R. A., Pronk, J. T., & Daran, J. M. (2020). Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast, 37(4), 283-304. https://doi.org/10.1002/yea.3461
- 8. Scansani, S., Rauhut, D., Brezina, S., Semmler, H., & Benito, S. (2020). The impact of chitosan on the chemical composition of wines fermented with Schizosaccharomyces pombe and Saccharomyces
cerevisiae. Foods, 9(10), 1423. https://doi.org/10.3390/foods9101423
- 9. Vatandoostarani, S., Lotfabad, T. B., Heidarinasab, A., & Yaghmaei, S. (2017). Degradation of azo dye methyl red by Saccharomyces cerevisiae ATCC 9763. International Biodeterioration & Biodegradation, 125,
62-72. DOI : 10.1016/j.ibiod.2017.08.009
- 10. Erdoğan, Ö., Birtekocak, F., Oryaşın, E., Abbak, M., Demirbolat, G.M., Paşa, S., et al. (2019). Enginar yaprağı sulu ekstraktı kullanılarak çinko oksit nanopartiküllerinin yeşil sentezi, karakterizasyonu, anti-bakteriyel ve
sitotoksik etkileri. Duzce Medical Journal, 21(1), 19-26. https://doi.org/10.18678/dtfd.482351
- 11. Paşa, S., Erdogan, O., & Cevik, O. (2021). Design, synthesis and investigation of procaine based new Pd complexes as DNA methyltransferase inhibitor on gastric cancer cells. Inorganic Chemistry
Communications, 132, 108846. https://doi.org/10.1016/j.inoche.2021.108846
- 12. Gürler, N., Paşa, S., Erdoğan, Ö., & Cevik, O. (2021). Physicochemical properties for food packaging and toxicity behaviors against healthy cells of environmentally friendly biocompatible starch/citric
acid/polyvinyl alcohol biocomposite films. Starch‐Stärke, 2100074. https://doi.org/10.1002/star.202100074
- 13. Abas, B. I., Demirbolat, G. M., & Cevik, O. (2022). Wharton jelly-derived mesenchymal stem cell exosomes induce apoptosis and suppress EMT signaling in cervical cancer cells as an effective drug carrier
system of paclitaxel. PloS one, 17(9), e0274607. https://doi.org/10.1371/journal.pone.0274607
- 14. Thanh, N. T., & Green, L. A. (2010). Functionalisation of nanoparticles for biomedical applications. Nano today, 5(3), 213-230. https://doi.org/10.1016/j.nantod.2010.05.003
- 15. Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914. https://doi.org/10.1016/j.ceramint.2016.10.051
- 16. Agarwal, H., Kumar, S. V., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413.
- https://doi.org/10.1016/j.reffit.2017.03.002
- 17. Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345,
329-336. https://doi.org/10.1016/j.apsusc.2015.03.176
- 18. Selim, Y. A., Azb, M. A., Ragab, I., & HM Abd El-Azim, M. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific reports, 10(1), 1-9.
https://doi.org/10.1038/s41598-020-60541-1
- 19. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., & Praseetha, P. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial
analysis. Materials Science in Semiconductor Processing, 82, 39-45. https://doi.org/10.1016/j.mssp.2018.03.017
- 20. Farrés, M., Piña, B., & Tauler, R. (2015). Chemometric evaluation of Saccharomyces cerevisiae metabolic profiles using LC–MS. Metabolomics, 11(1), 210-224. DOI: 10.1007/s11306-014-0689-z
- 21. Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., et al. (2019). Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene
blue. Optik, 184, 324-329. https://doi.org/10.1016/j.ijleo.2019.03.051
- 22. Hamk, M., Akçay, F. A., & Avcı, A. (2022). Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Preparative Biochemistry &
Biotechnology, 1-10. https://doi.org/10.1080/10826068.2022.2076243
- 23. Keese, C. R., Wegener, J., Walker, S. R., & Giaever, I. (2004). Electrical wound-healing assay for cells in vitro. Proceedings of the National Academy of Sciences, 101(6), 1554-1559. DOI: 10.1073/pnas.0307588100
- 24. Erdoğan, Ö., Abbak, M., Demirbolat, G. M., Aksel, M., Paşa, S., Dönmez Yalçın, G., et al. (2021). Treatment of glioblastoma by photodynamic therapy with the aid of synthesized silver nanoparticles by green
chemistry from Citrus aurantium. Journal of research in pharmacy (online), 25(5), 641-652. DOI: 10.29228/jrp.56
- 25. Majhi, R. K., Mohanty, S., Khan, M. I., Mishra, A., & Brauner, A. (2021). Ag@ ZnO nanoparticles induce antimicrobial peptides and promote migration and antibacterial activity of keratinocytes. ACS Infectious
Diseases, 7(8), 2068-2072. https://doi.org/10.1021/acsinfecdis.0c00903
- 26. Batool, M., Khurshid, S., Qureshi, Z., & Daoush, W. M. (2021). Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chemical Papers, 75(3), 893-907.
DOI:10.1007/s11696-020-01343-7
Investigation of The Effects of Zinc Oxide Nanoparticles Synthesized By Saccharomyces Cerevisiae Aqueous Lysate on In-Vitro Wound Healing Model
Yıl 2023,
, 127 - 135, 31.01.2023
Ömer Erdoğan
,
Ozge Cevik
Öz
Objective: The objective of this study was to examine the toxic and wound-healing behaviours of zinc oxide (ZnO) nanoparticles synthesized with an aqueous lysate of sourdough (Saccharomyces cerevisiae) on L929 mouse fibroblast cells.
Method: Zinc oxide nanoparticles were synthesized by microwave method using the aqueous lysate of Saccharomyces cerevisiae. Characterization of ZnO nanoparticles was accomplished with Ultraviolet-Visible region spectroscopy (UV-Vis), SEM and Zeta sizer. The toxic behavior of ZnONPs at concentrations of 1, 10, 100, 1000 µg/mL and their effects on wound healing were investigated in-vitro in L929 cells.
Results: A sharp peak was observed at 360-380 nm specific to ZnO in the UV spectrum. In the zeta analysis, the mean size of ZnO nanoparticles was 512.8±16 nm and the zeta charge was -30.38±3.12 mV. It was found that L929 cells treated with ZnONPs did not show dose-dependent manner. A significant increase was found in the wound closure amount of L929 cells applied 10, 100 and 1000 µg/mL ZnONPs compared to the control group cells.
Conclusion: In-vitro wound healing effects of zinc oxide (ZnO) nanoparticles synthesized with Saccharomyces cerevisiae aqueous lysate show that these nanoparticles have the potential to be used in the pharmaceutical and cosmetic industries.
Kaynakça
- 1. Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., et al. (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PloS one, 14(6), e0216496. DOI: 10.1371/journal.pone.0216496
- 2. Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic chemistry and applications, 2018, 1062562. https://doi.org/10.1155/2018/1062562
- 3. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., et al. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters, 7(3), 219-242.
https://doi.org/10.1007/s40820-015-0040-x
- 4. Gupta, K., & Chundawat, T. S. (2020). Zinc oxide nanoparticles synthesized using Fusarium oxysporum to enhance bioethanol production from rice-straw. Biomass and Bioenergy, 143, 105840. DOI :
10.1016/j.biombioe.2020.105840
- 5. Abdelkader, D. H., Negm, W. A., Elekhnawy, E., Eliwa, D., Aldosari, B. N., & Almurshedi, A. S. (2022). Zinc oxide nanoparticles as potential delivery carrier: green synthesis by aspergillus niger endophytic fungus,
characterization, and ın vitro/ın vivo antibacterial activity. Pharmaceuticals, 15(9), 1057. DOI: 10.3390/ph15091057
- 6. Saravanakumar, K., Jeevithan, E., Hu, X., Chelliah, R., Oh, D. H., & Wang, M. H. (2020). Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles
conjugated with β-D-glucan from barley. Journal of Photochemistry and Photobiology B: Biology, 203, 111728. https://doi.org/10.1016/j.jphotobiol.2019.111728
- 7. Perli, T., Wronska, A. K., Ortiz‐Merino, R. A., Pronk, J. T., & Daran, J. M. (2020). Vitamin requirements and biosynthesis in Saccharomyces cerevisiae. Yeast, 37(4), 283-304. https://doi.org/10.1002/yea.3461
- 8. Scansani, S., Rauhut, D., Brezina, S., Semmler, H., & Benito, S. (2020). The impact of chitosan on the chemical composition of wines fermented with Schizosaccharomyces pombe and Saccharomyces
cerevisiae. Foods, 9(10), 1423. https://doi.org/10.3390/foods9101423
- 9. Vatandoostarani, S., Lotfabad, T. B., Heidarinasab, A., & Yaghmaei, S. (2017). Degradation of azo dye methyl red by Saccharomyces cerevisiae ATCC 9763. International Biodeterioration & Biodegradation, 125,
62-72. DOI : 10.1016/j.ibiod.2017.08.009
- 10. Erdoğan, Ö., Birtekocak, F., Oryaşın, E., Abbak, M., Demirbolat, G.M., Paşa, S., et al. (2019). Enginar yaprağı sulu ekstraktı kullanılarak çinko oksit nanopartiküllerinin yeşil sentezi, karakterizasyonu, anti-bakteriyel ve
sitotoksik etkileri. Duzce Medical Journal, 21(1), 19-26. https://doi.org/10.18678/dtfd.482351
- 11. Paşa, S., Erdogan, O., & Cevik, O. (2021). Design, synthesis and investigation of procaine based new Pd complexes as DNA methyltransferase inhibitor on gastric cancer cells. Inorganic Chemistry
Communications, 132, 108846. https://doi.org/10.1016/j.inoche.2021.108846
- 12. Gürler, N., Paşa, S., Erdoğan, Ö., & Cevik, O. (2021). Physicochemical properties for food packaging and toxicity behaviors against healthy cells of environmentally friendly biocompatible starch/citric
acid/polyvinyl alcohol biocomposite films. Starch‐Stärke, 2100074. https://doi.org/10.1002/star.202100074
- 13. Abas, B. I., Demirbolat, G. M., & Cevik, O. (2022). Wharton jelly-derived mesenchymal stem cell exosomes induce apoptosis and suppress EMT signaling in cervical cancer cells as an effective drug carrier
system of paclitaxel. PloS one, 17(9), e0274607. https://doi.org/10.1371/journal.pone.0274607
- 14. Thanh, N. T., & Green, L. A. (2010). Functionalisation of nanoparticles for biomedical applications. Nano today, 5(3), 213-230. https://doi.org/10.1016/j.nantod.2010.05.003
- 15. Mirzaei, H., & Darroudi, M. (2017). Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International, 43(1), 907-914. https://doi.org/10.1016/j.ceramint.2016.10.051
- 16. Agarwal, H., Kumar, S. V., & Rajeshkumar, S. (2017). A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Resource-Efficient Technologies, 3(4), 406-413.
- https://doi.org/10.1016/j.reffit.2017.03.002
- 17. Elumalai, K., & Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345,
329-336. https://doi.org/10.1016/j.apsusc.2015.03.176
- 18. Selim, Y. A., Azb, M. A., Ragab, I., & HM Abd El-Azim, M. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific reports, 10(1), 1-9.
https://doi.org/10.1038/s41598-020-60541-1
- 19. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., & Praseetha, P. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial
analysis. Materials Science in Semiconductor Processing, 82, 39-45. https://doi.org/10.1016/j.mssp.2018.03.017
- 20. Farrés, M., Piña, B., & Tauler, R. (2015). Chemometric evaluation of Saccharomyces cerevisiae metabolic profiles using LC–MS. Metabolomics, 11(1), 210-224. DOI: 10.1007/s11306-014-0689-z
- 21. Chen, L., Batjikh, I., Hurh, J., Han, Y., Huo, Y., Ali, H., et al. (2019). Green synthesis of zinc oxide nanoparticles from root extract of Scutellaria baicalensis and its photocatalytic degradation activity using methylene
blue. Optik, 184, 324-329. https://doi.org/10.1016/j.ijleo.2019.03.051
- 22. Hamk, M., Akçay, F. A., & Avcı, A. (2022). Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Preparative Biochemistry &
Biotechnology, 1-10. https://doi.org/10.1080/10826068.2022.2076243
- 23. Keese, C. R., Wegener, J., Walker, S. R., & Giaever, I. (2004). Electrical wound-healing assay for cells in vitro. Proceedings of the National Academy of Sciences, 101(6), 1554-1559. DOI: 10.1073/pnas.0307588100
- 24. Erdoğan, Ö., Abbak, M., Demirbolat, G. M., Aksel, M., Paşa, S., Dönmez Yalçın, G., et al. (2021). Treatment of glioblastoma by photodynamic therapy with the aid of synthesized silver nanoparticles by green
chemistry from Citrus aurantium. Journal of research in pharmacy (online), 25(5), 641-652. DOI: 10.29228/jrp.56
- 25. Majhi, R. K., Mohanty, S., Khan, M. I., Mishra, A., & Brauner, A. (2021). Ag@ ZnO nanoparticles induce antimicrobial peptides and promote migration and antibacterial activity of keratinocytes. ACS Infectious
Diseases, 7(8), 2068-2072. https://doi.org/10.1021/acsinfecdis.0c00903
- 26. Batool, M., Khurshid, S., Qureshi, Z., & Daoush, W. M. (2021). Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chemical Papers, 75(3), 893-907.
DOI:10.1007/s11696-020-01343-7