Di-(2-ethylhexyl)-phthalate’e Maruz Kalan Alburnus tarichi (Güldenstӓdt, 1814) Erken Larvalarında Östrojen Reseptör ve P450 Aromataz mRNA Seviyeleri
Yıl 2020,
, 107 - 115, 31.05.2020
Güler Ünal
,
Ertuğrul Kankaya
Burak Kaptaner
,
Ahmet R. Oğuz
,
İan P. Callard
Öz
Amaç: Bu çalışmanın amacı Alburnus tarichi’nin erken larval gelişimi üzerine fitalatın etkisini belirlemektir.
Yöntem: Erken larval dönemde (yumurtadan çıktıktan 2 gün sonra) 0.1, 1, ve 10 µg/L fitalat’a, 6 gün, maruz bırakılarak larvalarda östrojen reseptörleri alfa, beta-1 ve beta-2 ve aromataz B ve A’nın mRNA seviyeleri ölçüldü.
Bulgular: Fitalat’ın her üç konsantrasyonunda östrojen reseptör alfa, beta1, beta2 ve aromataz B’nin mRNA seviyelerinde belirgin bir değişiklik olmadığı belirlendi. Bununla birlikte aromataz A mRNA seviyesi fitalat’ın 0.1 µg/L uygulamasında belirgin olarak artarken 1 ve 10 µg/L uygulamalarda değişiklik gözlenmedi.
Sonuç: Bu sonuçlar, fitalat’ın çevresel konsantrasyonlarının kısa sureli uygulamalarda, Alburnus tarichi erken larval gelişimi sırasında, steroid sentezindeki genleri önemli seviyede etkilemediğini göstermiştir. Bununla birlikte fitalat’ın gen ekspresyonu üzerindeki etkisini belirlemek için, dış beslenmeyi de içine alan uzun süreli uygulamalı çalışmalara ihtiyaç vardır.
Destekleyen Kurum
Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Başkanlığı
Proje Numarası
2013-HIZ-FEN003
Teşekkür
Yüzüncü Yıl Üniversitesi BAPB, Kellie A. Cotter ve Rebecca Meyer
Kaynakça
- 1. Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., & Rintala, J. A. (2003). Removal of bis (2-ethylhexyl) phthalate at a sewage treatment plant. Water Research, 37(6), 1385-1393.
- 2. Asakura, H., Matsuto, T., & Tanaka, N. (2004). Behavior of endocrine-disrupting chemicals in leachate from MSW landfill sites in Japan. Waste Management, 24(6), 613-622.
- 3. Yuwatini, E., Hata, N., & Taguchi, S. (2006). Behavior of di (2-ethylhexyl) phthalate discharged from domestic waste water into aquatic environment. Journal of Environmental Monitoring, 8(1), 191-196.
- 4. Yuwatini, E., Hata, N., Kuramitz, H., & Taguchi, S. (2013). Effect of salting-out on distribution behavior of di (2-ethylhexyl) phthalate and its analogues between water and sediment. SpringerPlus, 2(1), 422.
- 5. Xu, G., Li, F., & Wang, Q. (2008). Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Science of the Total Environment, 393(2-3), 333-340.
- 6. Latini, G., De Felice, C., Presta, G., Del Vecchio, A., Paris, I., Ruggieri, F., et al. (2003). In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environmental health perspectives, 111(14), 1783-1785.
- 7. Hokanson, R., Hanneman, W., Hennessey, M., Donnelly, K. C., McDonald, T., Chowdhary, R., et al. (2006). DEHP, bis (2)-ethylhexyl phthalate, alters gene expression in human cells: possible correlation with initiation of fetal developmental abnormalities. Human & experimental toxicology, 25(12), 687-695.
- 8. Hauser, R., & Calafat, A. M. (2005). Phthalates and human health. Occupational and environmental medicine, 62(11), 806-818.
- 9. Jobling, S., Reynolds, T., White, R., Parker, M. G., & Sumpter, J. P. (1995). A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environmental health perspectives, 103(6), 582-587.
- 10. Kim, E. J., Kim, J. W., & Lee, S. K. (2002). Inhibition of oocyte development in Japanese medaka (Oryzias latipes) exposed to di-2-ethylhexyl phthalate. Environment International, 28(5), 359-365.
- 11. Shioda, T., & Wakabayashi, M. (2000). Effect of certain chemicals on the reproduction of medaka (Oryziaslatipes). Chemosphere, 40(3), 239-243.
- 12. Zanotelli, V. R., Neuhauss, S. C., & Ehrengruber, M. U. (2010). Long‐term exposure to bis (2‐ethylhexyl) phthalate (DEHP) inhibits growth of guppy fish (Poecilia reticulata). Journal of Applied Toxicology: An International Journal, 30(1), 29-33.
- 13. Hatef, A., Alavi, S. M. H., Milla, S., Butts, I. A., Rodina, M., Carnevali, O., et al. Di-(2-ethylhexyl)-phthalate Impaırs Sperm Qualıty In Goldfısh Assocıated Wıth Dısruptıon In Androgenesıs. Sperm Functions Impairments and Steroidogenesis Transcriptomic Alternations in Fish Exposed to Endocrine Disrupting Chemicals.
- 14. Chikae, M., Hatano, Y., Ikeda, R., Morita, Y., Hasan, Q., & Tamiya, E. (2004). Effects of bis (2-ethylhexyl) phthalate and benzo [a] pyrene on the embryos of Japanese medaka (Oryzias latipes). Environmental toxicology and pharmacology, 16(3), 141-145.
- 15. Chikae, M., Ikeda, R., Hatano, Y., Hasan, Q., Morita, Y., & Tamiya, E. (2004). Effects of bis (2-ethylhexyl) phthalate, γ-hexachlorocyclohexane, and 17β-estradiol on the fry stage of medaka (Oryzias latipes). Environmental toxicology and pharmacology, 18(1), 9-12.
- 16. Norman, A., Börjeson, H., David, F., Tienpont, B., & Norrgren, L. (2007). Studies of uptake, elimination, and late effects in Atlantic salmon (Salmo salar) dietary exposed to di-2-ethylhexyl phthalate (DEHP) during early life. Archives of environmental contamination and toxicology, 52(2), 235-242.
- 17. Lee, J. T., & Liang, H. H. (2011). Preliminary Study on Zebra Fish’s DNA Exposure to Di-2-ethylhexyl Phthalate Effects. Journal of Water Sustainability, 1(3), 323-331.
- 18. Greytak, S. R., & Callard, G. V. (2007). Cloning of three estrogen receptors (ER) from killifish (Fundulus heteroclitus): differences in populations from polluted and reference environments. General and comparative endocrinology, 150(1), 174-188.
- 19. Halm, S., Martınez-Rodrıguez, G., Rodrıguez, L., Prat, F., Mylonas, C. C., Carrillo, M., et al. (2004). Cloning, characterisation, and expression of three oestrogen receptors (ERα, ERβ1 and ERβ2) in the European sea bass, Dicentrarchus labrax. Molecular and cellular endocrinology, 223(1-2), 63-75.
- 20. Nagler, J. J., Cavileer, T. D., Verducci, J. S., Schultz, I. R., Hook, S. E., & Hayton, W. L. (2012). Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle. General and comparative endocrinology, 178(3), 556-561.
- 21. Ankley, G. T., Kahl, M. D., Jensen, K. M., Hornung, M. W., Korte, J. J., Makynen, E. A., et al. (2002). Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicological sciences, 67(1), 121-130.
- 22. Hoffmann, J. L., Torontali, S. P., Thomason, R. G., Lee, D. M., Brill, J. L., Price, B. B., et al. (2006). Hepatic gene expression profiling using Genechips in zebrafish exposed to 17α-ethynylestradiol. Aquatic Toxicology, 79(3), 233-246.
- 23. Jobling, S., Beresford, N., Nolan, M., Rodgers-Gray, T., Brighty, G. C., Sumpter, J.P., et al. (2002). Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biology of reproduction, 66(2), 272-281.
- 24. Katsu, Y., Lange, A., Urushitani, H., Ichikawa, R., Paull, G. C., Cahill, L. L., et al.(2007). Functional associations between two estrogen receptors, environmental estrogens, and sexual disruption in the roach (Rutilus rutilus). Environmental science & technology, 41(9), 3368-3374.
- 25. Kishida, M., & Callard, G. V. (2001). Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology, 142(2), 740-750.
- 26. Lange, A., Katsu, Y., Ichikawa, R., Paull, G. C., Chidgey, L. L., Coe, T. S., et al. (2008). Altered sexual development in roach (Rutilus rutilus) exposed to environmental concentrations of the pharmaceutical 17α-ethinylestradiol and associated expression dynamics of aromatases and estrogen receptors. Toxicological Sciences, 106(1), 113-123.
- 27. Kishida, M., McLellan, M., Miranda, J. A., & Callard, G. V. (2001). Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2-3), 261-268.
- 28. Kazeto, Y., Place, A. R., & Trant, J. M. (2004). Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquatic toxicology, 69(1), 25-34..
- 29. Unal, G., Marquez, E. C., Feld, M., Stavropoulos, P., & Callard, I. P. (2014). Isolation of estrogen receptor subtypes and vitellogenin genes: expression in female Chalcalburnus tarichi. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 172, 67-73.
- 30. Ünal, G., Çetinkaya, O., & Elp, M. (2000). The embryonic and larval development of Chalcalburnus tarichi (Cyprinidae): An endemic fish species of the lake Van basin, Turkey. Bull. of Pure and Appl. Sci. A, 19, 27-41.
- 31. Simon, P. (2003). Q-Gene: processing quantitative real-time RT–PCR data. Bioinformatics, 19(11), 1439-1440.
- 32. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45.
- 33. Barse, A.V., Chakrabarti, T., Ghosh, T. K., Pal, A. K., & Jadhao, S. B. (2007). Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pesticide biochemistry and physiology, 88(1), 36-42.
- 34. Carnevali, O., Tosti, L., Speciale, C., Peng, C., Zhu, Y., & Maradonna, F. (2010). DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. PLoS One, 5(4).
- 35. Uren-Webster, T. M., Lewis, C., Filby, A. L., Paull, G. C., & Santos, E. M. (2010). Mechanisms of toxicity of di (2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquatic toxicology, 99(3), 360-369.
- 36. Crago, J., & Klaper, R. (2012). A mixture of an environmentally realistic concentration of a phthalate and herbicide reduces testosterone in male fathead minnow (Pimephales promelas) through a novel mechanism of action. Aquatic toxicology, 110, 74-83.
- 37. Wang, X., Yang, Y., Zhang, L., Ma, Y., Han, J., Yang, L., et al. (2013). Endocrine disruption by di‐(2‐ethylhexyl)‐phthalate in Chinese rare minnow (Gobiocypris rarus). Environmental toxicology and chemistry, 32(8), 1846-1854.
- 38. Forlano, P. M., Deitcher, D. L., Myers, D. A., & Bass, A. H. (2001). Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. Journal of Neuroscience, 21(22), 8943-8955.
- 39. Kwon, J. Y., McAndrew, B. J., & Penman, D. J. (2001). Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus. Molecular Reproduction and Development: Incorporating Gamete Research, 59(4), 359-370.
- 40. Matsuoka, M. P., van Nes, S., Andersen, Ø., Benfey, T. J., & Reith, M. (2006). Real-time PCR analysis of ovary-and brain-type aromatase gene expression during Atlantic halibut (Hippoglossus hippoglossus) development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 144(1), 128-135.
- 41. Goto-Kazeto, R., Kight, K. E., Zohar, Y., Place, A. R., & Trant, J. M. (2004). Localization and expression of aromatase mRNA in adult zebrafish. General and comparative endocrinology, 139(1), 72-84.
- 42. Sawyer, S. J., Gerstner, K. A., & Callard, G. V. (2006). Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish: gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. General and comparative endocrinology, 147(2), 108-117.
- 43. Callard, G. V., Tchoudakova, A. V., Kishida, M., & Wood, E. (2001). Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. The Journal of steroid biochemistry and molecular biology, 79(1-5), 305-314.
Levels of Aromatase and Estrogen Receptors mRNA in Early Larvae of Alburnus tarichi (Güldenstӓdt, 1814) Exposed to Di-(2-ethylhexyl)-phthalate
Yıl 2020,
, 107 - 115, 31.05.2020
Güler Ünal
,
Ertuğrul Kankaya
Burak Kaptaner
,
Ahmet R. Oğuz
,
İan P. Callard
Öz
Objective: The aim of this study is to determine the effect of phthalate on the early larval development of Alburnus tarichi.
Methods: The larva (2 days after hatching) of Alburnus tarichi were exposed to 0.1, 1, and 10 µg/L phthalate for 6 days (during yolk sac nutrition), and the levels of estrogen receptor alfa, beta-1 and beta-2, and aromatase B and A mRNA levels were measured.
Results: No difference was found in the estrogen receptor alpha, beta-1, beta-2, and aromatase-B mRNA levels with all 3 concentrations of phthalate. However, the aromatase-A mRNA level was significantly increased with 0.1 µg/L of phthalate, while no changes were observed with 1 and 10 µg/L of phthalate.
Conclusion: These results suggest that short-time expose to environmentally relative concentrations of phthalate do not significantly affect genes in steroid synthesis during the early larval development of Alburnus tarichi. However, long-term applied studies including external nutrition are need to determination the effect of phthalate on steroid gene expression.
Proje Numarası
2013-HIZ-FEN003
Kaynakça
- 1. Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., & Rintala, J. A. (2003). Removal of bis (2-ethylhexyl) phthalate at a sewage treatment plant. Water Research, 37(6), 1385-1393.
- 2. Asakura, H., Matsuto, T., & Tanaka, N. (2004). Behavior of endocrine-disrupting chemicals in leachate from MSW landfill sites in Japan. Waste Management, 24(6), 613-622.
- 3. Yuwatini, E., Hata, N., & Taguchi, S. (2006). Behavior of di (2-ethylhexyl) phthalate discharged from domestic waste water into aquatic environment. Journal of Environmental Monitoring, 8(1), 191-196.
- 4. Yuwatini, E., Hata, N., Kuramitz, H., & Taguchi, S. (2013). Effect of salting-out on distribution behavior of di (2-ethylhexyl) phthalate and its analogues between water and sediment. SpringerPlus, 2(1), 422.
- 5. Xu, G., Li, F., & Wang, Q. (2008). Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China. Science of the Total Environment, 393(2-3), 333-340.
- 6. Latini, G., De Felice, C., Presta, G., Del Vecchio, A., Paris, I., Ruggieri, F., et al. (2003). In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environmental health perspectives, 111(14), 1783-1785.
- 7. Hokanson, R., Hanneman, W., Hennessey, M., Donnelly, K. C., McDonald, T., Chowdhary, R., et al. (2006). DEHP, bis (2)-ethylhexyl phthalate, alters gene expression in human cells: possible correlation with initiation of fetal developmental abnormalities. Human & experimental toxicology, 25(12), 687-695.
- 8. Hauser, R., & Calafat, A. M. (2005). Phthalates and human health. Occupational and environmental medicine, 62(11), 806-818.
- 9. Jobling, S., Reynolds, T., White, R., Parker, M. G., & Sumpter, J. P. (1995). A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environmental health perspectives, 103(6), 582-587.
- 10. Kim, E. J., Kim, J. W., & Lee, S. K. (2002). Inhibition of oocyte development in Japanese medaka (Oryzias latipes) exposed to di-2-ethylhexyl phthalate. Environment International, 28(5), 359-365.
- 11. Shioda, T., & Wakabayashi, M. (2000). Effect of certain chemicals on the reproduction of medaka (Oryziaslatipes). Chemosphere, 40(3), 239-243.
- 12. Zanotelli, V. R., Neuhauss, S. C., & Ehrengruber, M. U. (2010). Long‐term exposure to bis (2‐ethylhexyl) phthalate (DEHP) inhibits growth of guppy fish (Poecilia reticulata). Journal of Applied Toxicology: An International Journal, 30(1), 29-33.
- 13. Hatef, A., Alavi, S. M. H., Milla, S., Butts, I. A., Rodina, M., Carnevali, O., et al. Di-(2-ethylhexyl)-phthalate Impaırs Sperm Qualıty In Goldfısh Assocıated Wıth Dısruptıon In Androgenesıs. Sperm Functions Impairments and Steroidogenesis Transcriptomic Alternations in Fish Exposed to Endocrine Disrupting Chemicals.
- 14. Chikae, M., Hatano, Y., Ikeda, R., Morita, Y., Hasan, Q., & Tamiya, E. (2004). Effects of bis (2-ethylhexyl) phthalate and benzo [a] pyrene on the embryos of Japanese medaka (Oryzias latipes). Environmental toxicology and pharmacology, 16(3), 141-145.
- 15. Chikae, M., Ikeda, R., Hatano, Y., Hasan, Q., Morita, Y., & Tamiya, E. (2004). Effects of bis (2-ethylhexyl) phthalate, γ-hexachlorocyclohexane, and 17β-estradiol on the fry stage of medaka (Oryzias latipes). Environmental toxicology and pharmacology, 18(1), 9-12.
- 16. Norman, A., Börjeson, H., David, F., Tienpont, B., & Norrgren, L. (2007). Studies of uptake, elimination, and late effects in Atlantic salmon (Salmo salar) dietary exposed to di-2-ethylhexyl phthalate (DEHP) during early life. Archives of environmental contamination and toxicology, 52(2), 235-242.
- 17. Lee, J. T., & Liang, H. H. (2011). Preliminary Study on Zebra Fish’s DNA Exposure to Di-2-ethylhexyl Phthalate Effects. Journal of Water Sustainability, 1(3), 323-331.
- 18. Greytak, S. R., & Callard, G. V. (2007). Cloning of three estrogen receptors (ER) from killifish (Fundulus heteroclitus): differences in populations from polluted and reference environments. General and comparative endocrinology, 150(1), 174-188.
- 19. Halm, S., Martınez-Rodrıguez, G., Rodrıguez, L., Prat, F., Mylonas, C. C., Carrillo, M., et al. (2004). Cloning, characterisation, and expression of three oestrogen receptors (ERα, ERβ1 and ERβ2) in the European sea bass, Dicentrarchus labrax. Molecular and cellular endocrinology, 223(1-2), 63-75.
- 20. Nagler, J. J., Cavileer, T. D., Verducci, J. S., Schultz, I. R., Hook, S. E., & Hayton, W. L. (2012). Estrogen receptor mRNA expression patterns in the liver and ovary of female rainbow trout over a complete reproductive cycle. General and comparative endocrinology, 178(3), 556-561.
- 21. Ankley, G. T., Kahl, M. D., Jensen, K. M., Hornung, M. W., Korte, J. J., Makynen, E. A., et al. (2002). Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicological sciences, 67(1), 121-130.
- 22. Hoffmann, J. L., Torontali, S. P., Thomason, R. G., Lee, D. M., Brill, J. L., Price, B. B., et al. (2006). Hepatic gene expression profiling using Genechips in zebrafish exposed to 17α-ethynylestradiol. Aquatic Toxicology, 79(3), 233-246.
- 23. Jobling, S., Beresford, N., Nolan, M., Rodgers-Gray, T., Brighty, G. C., Sumpter, J.P., et al. (2002). Altered sexual maturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewage effluents. Biology of reproduction, 66(2), 272-281.
- 24. Katsu, Y., Lange, A., Urushitani, H., Ichikawa, R., Paull, G. C., Cahill, L. L., et al.(2007). Functional associations between two estrogen receptors, environmental estrogens, and sexual disruption in the roach (Rutilus rutilus). Environmental science & technology, 41(9), 3368-3374.
- 25. Kishida, M., & Callard, G. V. (2001). Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology, 142(2), 740-750.
- 26. Lange, A., Katsu, Y., Ichikawa, R., Paull, G. C., Chidgey, L. L., Coe, T. S., et al. (2008). Altered sexual development in roach (Rutilus rutilus) exposed to environmental concentrations of the pharmaceutical 17α-ethinylestradiol and associated expression dynamics of aromatases and estrogen receptors. Toxicological Sciences, 106(1), 113-123.
- 27. Kishida, M., McLellan, M., Miranda, J. A., & Callard, G. V. (2001). Estrogen and xenoestrogens upregulate the brain aromatase isoform (P450aromB) and perturb markers of early development in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2-3), 261-268.
- 28. Kazeto, Y., Place, A. R., & Trant, J. M. (2004). Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles. Aquatic toxicology, 69(1), 25-34..
- 29. Unal, G., Marquez, E. C., Feld, M., Stavropoulos, P., & Callard, I. P. (2014). Isolation of estrogen receptor subtypes and vitellogenin genes: expression in female Chalcalburnus tarichi. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 172, 67-73.
- 30. Ünal, G., Çetinkaya, O., & Elp, M. (2000). The embryonic and larval development of Chalcalburnus tarichi (Cyprinidae): An endemic fish species of the lake Van basin, Turkey. Bull. of Pure and Appl. Sci. A, 19, 27-41.
- 31. Simon, P. (2003). Q-Gene: processing quantitative real-time RT–PCR data. Bioinformatics, 19(11), 1439-1440.
- 32. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research, 29(9), e45-e45.
- 33. Barse, A.V., Chakrabarti, T., Ghosh, T. K., Pal, A. K., & Jadhao, S. B. (2007). Endocrine disruption and metabolic changes following exposure of Cyprinus carpio to diethyl phthalate. Pesticide biochemistry and physiology, 88(1), 36-42.
- 34. Carnevali, O., Tosti, L., Speciale, C., Peng, C., Zhu, Y., & Maradonna, F. (2010). DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis. PLoS One, 5(4).
- 35. Uren-Webster, T. M., Lewis, C., Filby, A. L., Paull, G. C., & Santos, E. M. (2010). Mechanisms of toxicity of di (2-ethylhexyl) phthalate on the reproductive health of male zebrafish. Aquatic toxicology, 99(3), 360-369.
- 36. Crago, J., & Klaper, R. (2012). A mixture of an environmentally realistic concentration of a phthalate and herbicide reduces testosterone in male fathead minnow (Pimephales promelas) through a novel mechanism of action. Aquatic toxicology, 110, 74-83.
- 37. Wang, X., Yang, Y., Zhang, L., Ma, Y., Han, J., Yang, L., et al. (2013). Endocrine disruption by di‐(2‐ethylhexyl)‐phthalate in Chinese rare minnow (Gobiocypris rarus). Environmental toxicology and chemistry, 32(8), 1846-1854.
- 38. Forlano, P. M., Deitcher, D. L., Myers, D. A., & Bass, A. H. (2001). Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: aromatase enzyme and mRNA expression identify glia as source. Journal of Neuroscience, 21(22), 8943-8955.
- 39. Kwon, J. Y., McAndrew, B. J., & Penman, D. J. (2001). Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus. Molecular Reproduction and Development: Incorporating Gamete Research, 59(4), 359-370.
- 40. Matsuoka, M. P., van Nes, S., Andersen, Ø., Benfey, T. J., & Reith, M. (2006). Real-time PCR analysis of ovary-and brain-type aromatase gene expression during Atlantic halibut (Hippoglossus hippoglossus) development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 144(1), 128-135.
- 41. Goto-Kazeto, R., Kight, K. E., Zohar, Y., Place, A. R., & Trant, J. M. (2004). Localization and expression of aromatase mRNA in adult zebrafish. General and comparative endocrinology, 139(1), 72-84.
- 42. Sawyer, S. J., Gerstner, K. A., & Callard, G. V. (2006). Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish: gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. General and comparative endocrinology, 147(2), 108-117.
- 43. Callard, G. V., Tchoudakova, A. V., Kishida, M., & Wood, E. (2001). Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. The Journal of steroid biochemistry and molecular biology, 79(1-5), 305-314.