Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Salicylic Acid and Boron Combination on the Nutrient Elements of Strawberry Leaf and Fruit

Yıl 2024, Cilt: 34 Sayı: 1, 13 - 23, 30.06.2024
https://doi.org/10.18615/anadolu.1452274

Öz

Strawberry is one of the most consumed fruits in the world, and Turkey ranks fifth in world strawberry production. In the years 2021-2022, this experiment was carried out to test the leaf and fruit plant nutrient levels, quality parameters and reuse level of Strawberry (Fragaria x ananassa cv. Albion) plants by applying salicylic acid+boron combination treatments. Coconut peat was used in a soilless environment and treatments were applied according to the randomized blocks experiment design, in the form of 1-control (SA0+B0), 2-SA1+B1, 3-SA2+B2 and 4-SA3+B3 in different doses of applications with three replications. Macro elements in the range of (%) 2,13-2,88 N, 0,29-0,61 P, 2,36-3,41 K, 0,92-1,44 Ca and 0,40-0,58 Mg and microelements ranging from (mg/kg) 22,64-176,70 B, 215,54-236,79 Fe, 35,62-49,24 Zn, 122,89-146,80 Mn, 3,43-4,13 Cu and 56,86-97,45 Cl were detected in leaf. Macro elements ranged from (%) 1,23-1,77 N, 0,21-0,32 P, 2,14-2,88 K, 0,30-0,51 Ca, 0,16-0,23 Mg and micro elements (mg/kg) ranging from 23,90-51,04 B, 79,22-90,73 Fe, 16,72-22,40 Zn, 38,74-49,83 Mn and 1,39-1,49 Cu were detected in fruit samples. It was observed that the membrane permeability (MG) value in leaf samples had the lowest value in the SA3+B3 application with 15.54% and the highest value in the SA0+B0 application with 20.06%. The SPAD value of the leaf reached its maximum value of 48.58 in the SA2+B2 application and its minimum value of 42.83 in the SA0+B0 application. It was observed that SA2+B2 application came to the fore in terms of nutritional elements in leaf samples and fruit samples.

Kaynakça

  • Aghaeifard, F., M. Babalar., E. Fallahi,. and A. Ahmadi. 2016. Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria ananassa Duch.) cv Camarosa. Journal of Plant Nutrition 39(13): 1821-1829.
  • Aras, S., and S. Eşitken. 2019. Dry matter partitioning and salt tolerance via salicylic acid treatment in strawberry plant under salt stress. K.S.U Journal of Agriculture and Nature. 22 (Suppl 2): 337-341.
  • Archana, N.P., and P. Verma. 2017. Boron deficiency and toxicity and their tolerance in plants: a review. Journal of Global Biosciences 6(4): 4958–4965.
  • Bajji, M., J.M. Kinet., and S. Lutts. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Canadian Journal of Botany 80(3): 297-304.
  • Berger, M. 2012. Potentiometric determination of chloride in natural waters: an extended analysis. Journal of Chemical Education 89(6): 812-813.
  • Brdar-Jokanovic, M. 2020. Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences 21(4): 1424.
  • Bremner, J.M. 1965. Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: pp. 1085-1122. Chemical Methods, SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin.
  • Bulduk, E.U., ve İ. Erdal. 2012. Genotipsel farklılığın çileğin mineral beslenmesi üzerine etkisi. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi 29(1): 59-70.
  • Çeliktopuz, E., ve B. Özekici. 2020. Çilek meyve ve yaprak mikro besin elementlerinin farklı sulama seviyeleri ile biyoaktivatör uygulamasına tepkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 30(1): 18-29.
  • Fixen, P.E. 1993. Crop responses to chloride. Advances in Agronomy 50:107-150.
  • Franksak, J., R. Rosa., A. Zaniewicz-Bajkowska., and D. Słonecka. 2019. Effects of boron application and treatment with effective microorganisms on the growth, yield and some quality attributes of broccoli. Journal of Elementology 24(4): 1335-1348.
  • Gerdakaneh, M., A. Mozafari., A. Khalighi., and A.S. Mardah. 2010. The effects of exogenous proline and osmotic stress on morpho-biochemical parameters of strawberry callus. African Journal of Biotechnology 9(25): 3775-3779.
  • Gupta, U.C. 1993. Factors Affecting Boron Uptake By Plants. In Boron and its Role in Crop Production pp. 87-104. Ed. U.C. Gupta. CRC Press, Boca Raton, USA.
  • Hancock, J.F. 2008. Fragaria x ananasa strawberry pp. 651-660. In: Janick, J., Paull, R.E. (Eds.), The Encyclopedia of Fruits and Nuts. CAB International, Cambridge University Press, Cambridge.
  • Hayat, Q., S. Hayat., M. Irfan., and A. Ahmad. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany 68(1): 14-25.
  • Heckman, N.L., G.L. Horst., R.E. Gaussoin., and B.T. Tavener. 2002. Trinexapac-ethyl influence on cell membrane thermostability of kentucky bluegrass leaf tissue. Scientia Horticulturae 92(2): 183-186.
  • Jamali, B., S. Eshghi., and E. Tafazoli. 2011. Vegetative and reproductive growth of strawberry plants, cv. Pajaro affected by salicylic acid and nickel. Journal of Agricultural Science and Technology 13(6):895-904.
  • Jones, J.R., J.B. Wolf., and H.A. Mills. 1991. Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide, pp. 213.
  • Kacar, B., ve A. İnal. 2008. Bitki Analizleri s. 892. Nobel Yayın Dağıtım, Ankara.
  • Kazemi, M., S. Zamani., and M. Aran. 2011. Effect of salicylic acid treatments on quality characteristics of apple fruits during storage. American Journal of Plant Physiology. 6(2): 113-119.
  • Keskin, M., A. Arslan., ve Bal. 2017. Çilek bitkisi yaprak su içeriğinin renk ölçer ve klorofilmetre ile incelenmesi. International Advanced Researches & Engineering Congress. 16-18 November 2017, Osmaniye, Türkiye s. 2360-2368.
  • Khan, A.N., R.H. Qureshi., and N. Ahmad. 2004. Salt tolerance of cotton cultivars in relation to relative growth rate in saline environments. International Journal of Agriculture & Biology 6(5): 786-787.
  • Khan, M.I.R., M. Fatma., T.S. Per., N.A. Anjum,. and N.A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6:462.
  • Korkmaz, K.. 2018. Çilekte su stresi altındaki bitkiler üzerine hümik asit ve silikonun etkisinin incelenmesi. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı Şanlıurfa.
  • Lieten, F. 1997. Zinc nutrition of strawberies grown on rockwool (Refereed). Acta Horticulturae 450: 215-220.
  • Lott, W.L., J.P. Nery., J.R. Gall., and J.C. Medcoff. 1956. Leaf analysis techniques in coffee research. IBEC Res. Inst. Pub. 9: 21-24.
  • Lynn, D.G., and M. Chang. 1990. Phenolic signals in cohabitation: implications for plant development. Annual Review of Plant Physiology and Plant Molecular Biology 41:497-526.
  • Marschner, H. 2012. Mineral Nutrition of Higher Plants Third Edition, Academic Press is an imprint of Elsevier.
  • Merwad, M.A. Abdel-Rahman., M. Desokyb, El-Sayed., and M.M. Rady. 2018. Response of water deficit-stressed vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae. 228(3): 132-144.
  • Mobin, M., and N.A. Khan. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology 164(5): 601-610.
  • Nazar, R., N. Iqbal., S. Syeed., and N.A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology 168(8): 807-815.
  • Paranjpe, A.V., D.J. Cantliffe., E.M. Lamb., P.J. Stroffella., and C. Powell. 2003. Winter strawberry production in greenhouses using soilless substrates: an alternative to methyl bromide soil fumigation. Proceedings of the Florida State Horticultural Society 116: 98-105.
  • Raskin, I. 1992a, Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology 43(1): 439-463.
  • Raskin, I. 1992b. Salicylate, a new plant hormone. Plant Physiology. 99 (3): 799-803.
  • Shen, X., L., Zhou, Z.Y. Duan., A. Li., E. Eneji., and J. Li. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology 167(15): 1248-1252.
  • Shi, Q., Z. Bao., Z. Zhu., Q. Ying., and Q. Qian. 2006. Effect of diffrent treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzime activity in seedlings of Cucumis sativa L. Plant Growth Regulation 48:127-135.
  • Shireen, F., M. Nawaz., C. Chen., Q. Zhang., Z. Zheng., H. Sohail., J. Sun., H. Cao., Y. Huang., and Z. Bie. 2018. Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences 19:1856.
  • Tulipani, S., B. Mezzetti., F. Capocasa., S. Bompadre., J. Beekwilder., C.H.R. De Vos., E. Capanoglu., A. Bovy., and M. Battino. 2008. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry 56: 696–704.
  • TÜİK. 2023. Bitkisel üretim istatistikleri. Wolf, B. 1971. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Soil Science and Plant Analysis 2: 363-374.
  • Yoshinari, A. and J. Takano. 2017. Insights into the mechanisms underlying boron homeostasis in plants. Frontiers in Plant Science 8: 1951.

Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi

Yıl 2024, Cilt: 34 Sayı: 1, 13 - 23, 30.06.2024
https://doi.org/10.18615/anadolu.1452274

Öz

Çilek dünyada tüketimi en fazla olan meyvelerden birisi olup, Dünya çilek üretiminde Türkiye beşinci sırada yer almaktadır. Bu çalışmada 2021-2022 yıllarında topraksız ortamda hindistan cevizi torfu (cocopeat) kullanılarak tesadüf blokları deneme desenine göre 3 tekerrürlü olarak farklı dozda 1-kontrol (SA0+B0), 2-SA1+B1, 3-SA2+B2 ve 4-SA3+B3 şeklinde salisilik asit+bor kombinasyonu uygulanarak çilek (Fragaria x ananassa cv. Albion) bitkisinin yaprak ve meyve bitki besin elementleri düzeyi, kalite parametreleri ile kullanılan ortamın tekrar kullanma düzeyini test etmek için yapılmıştır. Yaprakta makro elementler (%) 2,13-2,88 N, 0,29-0,61 P, 2,36-3,41 K, 0,92-1,44 Ca ve 0,40-0,58 Mg ve mikro elementler (mg/kg) 22,64-176,70 B, 215,54-236,79 Fe, 35,62-49,24 Zn, 122,89-146,80 Mn, 3,43-4,13 Cu ve 56,86-97,45 Cl aralığında belirlenmiştir. Meyve örneklerinde makro elementler (%) 1,23-1,77 N, 0,21-0,32 P, 2,14-2,88 K, 0,30-0,51 Ca, 0,16-0,23 Mg ve mikro elementler (mg/kg) 23,90-51,04 B, 79,22-90,73 Fe, 16,72-22,40 Zn, 38,74-49,83 Mn ve 1,39-1,49 Cu aralığında saptanmıştır. Yaprak örneklerinde membran geçirgenliği (MG) değeri en küçük değeri %15,54 ile SA3+B3 uygulamasında ve en yüksek değer ise %20,06 ile SA0+B0 uygulamasından aldığı izlenmektedir. Yaprağın SPAD değeri SA2+B2 uygulamasında 48,58 ile maksimum, SA0+B0 uygulamasında 42,83 ile minimum değeri almıştır. Yaprak örneklerinde ve meyve örneklerinde besin elementleri açısından SA2+B2 uygulaması ön plana çıktığı görülmüştür.

Kaynakça

  • Aghaeifard, F., M. Babalar., E. Fallahi,. and A. Ahmadi. 2016. Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria ananassa Duch.) cv Camarosa. Journal of Plant Nutrition 39(13): 1821-1829.
  • Aras, S., and S. Eşitken. 2019. Dry matter partitioning and salt tolerance via salicylic acid treatment in strawberry plant under salt stress. K.S.U Journal of Agriculture and Nature. 22 (Suppl 2): 337-341.
  • Archana, N.P., and P. Verma. 2017. Boron deficiency and toxicity and their tolerance in plants: a review. Journal of Global Biosciences 6(4): 4958–4965.
  • Bajji, M., J.M. Kinet., and S. Lutts. 2002. Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Canadian Journal of Botany 80(3): 297-304.
  • Berger, M. 2012. Potentiometric determination of chloride in natural waters: an extended analysis. Journal of Chemical Education 89(6): 812-813.
  • Brdar-Jokanovic, M. 2020. Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences 21(4): 1424.
  • Bremner, J.M. 1965. Nitrogen Total. In: Sparks, D.L., Ed., Methods of Soil Analysis Part 3: pp. 1085-1122. Chemical Methods, SSSA Book Series 5, Soil Science Society of America, Madison, Wisconsin.
  • Bulduk, E.U., ve İ. Erdal. 2012. Genotipsel farklılığın çileğin mineral beslenmesi üzerine etkisi. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi 29(1): 59-70.
  • Çeliktopuz, E., ve B. Özekici. 2020. Çilek meyve ve yaprak mikro besin elementlerinin farklı sulama seviyeleri ile biyoaktivatör uygulamasına tepkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 30(1): 18-29.
  • Fixen, P.E. 1993. Crop responses to chloride. Advances in Agronomy 50:107-150.
  • Franksak, J., R. Rosa., A. Zaniewicz-Bajkowska., and D. Słonecka. 2019. Effects of boron application and treatment with effective microorganisms on the growth, yield and some quality attributes of broccoli. Journal of Elementology 24(4): 1335-1348.
  • Gerdakaneh, M., A. Mozafari., A. Khalighi., and A.S. Mardah. 2010. The effects of exogenous proline and osmotic stress on morpho-biochemical parameters of strawberry callus. African Journal of Biotechnology 9(25): 3775-3779.
  • Gupta, U.C. 1993. Factors Affecting Boron Uptake By Plants. In Boron and its Role in Crop Production pp. 87-104. Ed. U.C. Gupta. CRC Press, Boca Raton, USA.
  • Hancock, J.F. 2008. Fragaria x ananasa strawberry pp. 651-660. In: Janick, J., Paull, R.E. (Eds.), The Encyclopedia of Fruits and Nuts. CAB International, Cambridge University Press, Cambridge.
  • Hayat, Q., S. Hayat., M. Irfan., and A. Ahmad. 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany 68(1): 14-25.
  • Heckman, N.L., G.L. Horst., R.E. Gaussoin., and B.T. Tavener. 2002. Trinexapac-ethyl influence on cell membrane thermostability of kentucky bluegrass leaf tissue. Scientia Horticulturae 92(2): 183-186.
  • Jamali, B., S. Eshghi., and E. Tafazoli. 2011. Vegetative and reproductive growth of strawberry plants, cv. Pajaro affected by salicylic acid and nickel. Journal of Agricultural Science and Technology 13(6):895-904.
  • Jones, J.R., J.B. Wolf., and H.A. Mills. 1991. Plant Analysis Handbook. A Practical Sampling, Preparation, Analysis, and Interpretation Guide, pp. 213.
  • Kacar, B., ve A. İnal. 2008. Bitki Analizleri s. 892. Nobel Yayın Dağıtım, Ankara.
  • Kazemi, M., S. Zamani., and M. Aran. 2011. Effect of salicylic acid treatments on quality characteristics of apple fruits during storage. American Journal of Plant Physiology. 6(2): 113-119.
  • Keskin, M., A. Arslan., ve Bal. 2017. Çilek bitkisi yaprak su içeriğinin renk ölçer ve klorofilmetre ile incelenmesi. International Advanced Researches & Engineering Congress. 16-18 November 2017, Osmaniye, Türkiye s. 2360-2368.
  • Khan, A.N., R.H. Qureshi., and N. Ahmad. 2004. Salt tolerance of cotton cultivars in relation to relative growth rate in saline environments. International Journal of Agriculture & Biology 6(5): 786-787.
  • Khan, M.I.R., M. Fatma., T.S. Per., N.A. Anjum,. and N.A. Khan. 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6:462.
  • Korkmaz, K.. 2018. Çilekte su stresi altındaki bitkiler üzerine hümik asit ve silikonun etkisinin incelenmesi. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı Şanlıurfa.
  • Lieten, F. 1997. Zinc nutrition of strawberies grown on rockwool (Refereed). Acta Horticulturae 450: 215-220.
  • Lott, W.L., J.P. Nery., J.R. Gall., and J.C. Medcoff. 1956. Leaf analysis techniques in coffee research. IBEC Res. Inst. Pub. 9: 21-24.
  • Lynn, D.G., and M. Chang. 1990. Phenolic signals in cohabitation: implications for plant development. Annual Review of Plant Physiology and Plant Molecular Biology 41:497-526.
  • Marschner, H. 2012. Mineral Nutrition of Higher Plants Third Edition, Academic Press is an imprint of Elsevier.
  • Merwad, M.A. Abdel-Rahman., M. Desokyb, El-Sayed., and M.M. Rady. 2018. Response of water deficit-stressed vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae. 228(3): 132-144.
  • Mobin, M., and N.A. Khan. 2007. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology 164(5): 601-610.
  • Nazar, R., N. Iqbal., S. Syeed., and N.A. Khan. 2011. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology 168(8): 807-815.
  • Paranjpe, A.V., D.J. Cantliffe., E.M. Lamb., P.J. Stroffella., and C. Powell. 2003. Winter strawberry production in greenhouses using soilless substrates: an alternative to methyl bromide soil fumigation. Proceedings of the Florida State Horticultural Society 116: 98-105.
  • Raskin, I. 1992a, Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology 43(1): 439-463.
  • Raskin, I. 1992b. Salicylate, a new plant hormone. Plant Physiology. 99 (3): 799-803.
  • Shen, X., L., Zhou, Z.Y. Duan., A. Li., E. Eneji., and J. Li. 2010. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology 167(15): 1248-1252.
  • Shi, Q., Z. Bao., Z. Zhu., Q. Ying., and Q. Qian. 2006. Effect of diffrent treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzime activity in seedlings of Cucumis sativa L. Plant Growth Regulation 48:127-135.
  • Shireen, F., M. Nawaz., C. Chen., Q. Zhang., Z. Zheng., H. Sohail., J. Sun., H. Cao., Y. Huang., and Z. Bie. 2018. Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences 19:1856.
  • Tulipani, S., B. Mezzetti., F. Capocasa., S. Bompadre., J. Beekwilder., C.H.R. De Vos., E. Capanoglu., A. Bovy., and M. Battino. 2008. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. Journal of Agricultural and Food Chemistry 56: 696–704.
  • TÜİK. 2023. Bitkisel üretim istatistikleri. Wolf, B. 1971. The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Soil Science and Plant Analysis 2: 363-374.
  • Yoshinari, A. and J. Takano. 2017. Insights into the mechanisms underlying boron homeostasis in plants. Frontiers in Plant Science 8: 1951.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimleri ve Bitki Besleme (Diğer)
Bölüm Makaleler
Yazarlar

Ece Tosun 0000-0002-4928-1013

Mahmut Tepecik 0000-0001-6609-4538

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 13 Mart 2024
Kabul Tarihi 31 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 34 Sayı: 1

Kaynak Göster

APA Tosun, E., & Tepecik, M. (2024). Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(1), 13-23. https://doi.org/10.18615/anadolu.1452274
AMA Tosun E, Tepecik M. Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi. ANADOLU. Haziran 2024;34(1):13-23. doi:10.18615/anadolu.1452274
Chicago Tosun, Ece, ve Mahmut Tepecik. “Salisilik Asit Ve Bor Kombinasyonunun Çilek Yaprağı Ve Meyvesinin Besin Elementleri Üzerindeki Etkisi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34, sy. 1 (Haziran 2024): 13-23. https://doi.org/10.18615/anadolu.1452274.
EndNote Tosun E, Tepecik M (01 Haziran 2024) Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34 1 13–23.
IEEE E. Tosun ve M. Tepecik, “Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi”, ANADOLU, c. 34, sy. 1, ss. 13–23, 2024, doi: 10.18615/anadolu.1452274.
ISNAD Tosun, Ece - Tepecik, Mahmut. “Salisilik Asit Ve Bor Kombinasyonunun Çilek Yaprağı Ve Meyvesinin Besin Elementleri Üzerindeki Etkisi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34/1 (Haziran 2024), 13-23. https://doi.org/10.18615/anadolu.1452274.
JAMA Tosun E, Tepecik M. Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi. ANADOLU. 2024;34:13–23.
MLA Tosun, Ece ve Mahmut Tepecik. “Salisilik Asit Ve Bor Kombinasyonunun Çilek Yaprağı Ve Meyvesinin Besin Elementleri Üzerindeki Etkisi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, c. 34, sy. 1, 2024, ss. 13-23, doi:10.18615/anadolu.1452274.
Vancouver Tosun E, Tepecik M. Salisilik Asit ve Bor Kombinasyonunun Çilek Yaprağı ve Meyvesinin Besin Elementleri Üzerindeki Etkisi. ANADOLU. 2024;34(1):13-2.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016