Yıl 2019,
Cilt: 13 Sayı: 3, 183 - 192, 31.12.2019
Müge Karakayalı
Tuna Önal
,
Mehmet İbrahim Tuğlu
Kaynakça
- 1. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal
stem cells: an update. Cell Transplant 2016;25:829–48.
2. Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA.
Preospective review of mesenchymal stem cells differentiation into
osteoblasts. Orthop Surg 2017;9:13–9.
3. Wu ZY, Sun Q, Liu M, Grottkau BE, He ZX, Zou Q, Ye C.
Correlation between the efficacy of stem cell therapy for osteonecrosis
of the femoral head and cell viability. BMC Musculoskelet Disord
2020;21:55.
4. Ciuffreda MC, Malpasso G, Musarò P, Turco V, Gnecchi M.
Protocols for in vitro differentiation of human mesenchymal stem
cells into osteogenic, chondrogenic and adipogenic lineages.
Methods Mol Biol 2016;1416:149–58.
5. Hauzeur JP, De Maertelaer V, Baudoux E, Malaise M, Beguin Y,
Gangji V. Inefficacy of autologous bone marrow concentrate in stage
three osteonecrosis: a randomized controlled double-blind trial. Int
Orthop 2018;42:1429–35.
6. Cheng C, Wentworth K, Shoback DM. New frontiers in osteoporosis
therapy. Annu Rev Med 2020;71:277–88.
7. Murray CE, Coleman CM. Impact of diabetes mellitus on bone
health. Int J Mol Sci 2019;20:19.
8. Rathinavelu S, Guidry-Elizondo C, Banu J. Molecular modulation of
osteoblasts and osteoclasts in type 2 diabetes. J Diabetes Res 2018;
2018:6354787.
9. Karaöz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M.
Characterization of mesenchymal stem cells from rat bone marrow:
ultrastructural properties, differentiation potential and immunophenotypic
markers. Histochem Cell Biol 2009;132:533–46.
10. Karaöz E, Do¤an BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç
ZS, Yürüker S, Duruksu G, Demircan PC, Sariboyaci AE. Isolation
and in vitro characterisation of dental pulp stem cells from natal
teeth. Histochem Cell Biol 2010;133:95–112.
11. Karaöz E, Okçu A, Gacar G, Sa¤lam O, Yürüker S, Kenar H. A comprehensive
characterization study of human bone marrow mscs with
an emphasis on molecular and ultrastructural properties. J Cell
Physiol 2011;226:1367–82.
12. Çelebi B, Elçin YM. Proteome analysis of rat bone marrow mesenchymal
stem cell subcultures. J Proteome Res 2009;8:2164–72.
13. Michael S, Achilleos C, Panayiotou T, Strati K. Inflammation shapes
stem cells and stemness during infection and beyond. Front Cell Dev
Biol 2016;4:118.
14. A¤acayak S, Gülsün B, Karaoz E, Nergiz Y, Uçan MC. Effects of
mesenchymal stem cells in critical size bone defect. Eur Rev Med
Pharmacol Sci 2012;16:679–86.
15. Huang KC, Chuang PY, Yang TY, Huang TW, Chang SF.
Hyperglycemia inhibits osteoblastogenesis of rat bone marrow stromal
cells via activation of the Notch2 signaling pathway. Int J Med
Sci 2019;16:696–703.
16. Jiang H, Wang Y, Meng J, Chen S, Wang J, Qiu Y, Zhao J, Guo T.
Effects of transplanting bone marrow stromal cells transfected with
CXCL13 on fracture healing of diabetic rats. Cell Physiol Biochem
2018;49:123–33.
17. Maycas M, Portolés MT, Matesanz MC, Buendía I, Linares J, Feito
MJ, Arcos D, Vallet-Regí M, Plotkin LI, Esbrit P, Gortázar AR.
High glucose alters the secretome of mechanically stimulated osteocyte-
like cells affecting osteoclast precursor recruitment and differentiation.
J Cell Physiol 2017;232:3611–21.
18. Deng X, Xu M, Shen M, Cheng J. Effects of type 2 diabetic serum
on proliferation and osteogenic differentiation of mesenchymal stem
cells. J Diabetes Res 2018;5765478.
19. Qu B, Gong K, Yang HS, Li YG, Jiang T, Zeng ZM, Cao ZR, Pan
XM. MiR-449 overexpression inhibits osteogenic differentiation of
bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1
pathway in high glucose and free fatty acids microenvironment.
Biochem Biophys Res Commun 2018;496:120–6.
20. Saito A, Nagaishi K, Iba K, Mizue Y, Chikenji T, Otani M, Nakano
M, Oyama K, Yamashita T, Fujimiya M. Umbilical cord extracts
improve osteoporotic abnormalities of bone marrow-derived mesenchymal
stem cells and promote their therapeutic effects on
ovariectomised rats. Sci Rep 2018;8:1161.
21. Zhang M, Li Y, Rao P, Huang K, Luo D, Cai X, Xiao J. Blockade of
receptors of advanced glycation end products ameliorates diabetic
osteogenesis of adipose-derived stem cells through DNA methylation
and Wnt signalling pathway. Cell Prolif 2018;51:e12471.
22. Xie H, Wang Q, Zhang X, Wang T, Hu W, Manicum T, Chen H,
Sun L. Possible therapeutic potential of berberine in the treatment of
STZ plus HFD-induced diabetic osteoporosis. Biomed Pharmacother
2018;108:280–7.
23. Ding X, Yang L, Hu Y, Yu J, Tang Y, Luo D, Zheng L. Effect of local
application of biphosphonates on improving peri-implant osseointegration
in type-2 diabetic osteoporosis. Am J Transl Res 2019;11:
5417–37.
24. Chen Y, Hu Y, Yang L, Zhou J, Tang Y, Zheng L, Qin P. Runx2
alleviates high glucose-suppressed osteogenic differentiation via
PI3K/AKT/GSK3‚/μ-catenin pathway. Cell Biol Int 2017;41:822–
32.
25. Zavatti M, Guida M, Maraldi T, Beretti, F, Bertoni L, La Sala GB,
De Pol A. Estrogen receptor signaling in the ferutinin-induced
osteoblastic differentiation of human amniotic fluid stem cells. Life
Sci 2016;164:15–22.
26. Crescitelli MC, Rauschemberger MB, Cepeda S, Sandoval M,
Massheimer VL. Role of estrone on the regulation of osteoblastogenesis.
Mol Cell Endocrinol 2019;498:110582
27. Gavali S, Gupta MK, Daswani B, Wani MR, Sirdeshmukh R,
Khatkhatay MI. Estrogen enhances human osteoblast survival and
function via promotion of autophagy. Biochim Biophys Acta Mol
Cell Res 2019;1866:1498–507.
28. Sun LJ, Li C, Wen XH, Guo L, Guo ZF, Liao LQ, Guo Y. Icariin
stimulates hFOB 1.19 osteoblast proliferation and differentiation via
OPG/RANKL mediated by the estrogen receptor. Curr Pharm
Biotechnol 2020. doi: 10.2174/1389201021666200123102550. [Epub
ahead of print].
29. Lv H, Sun Y, Zhang Y. MiR-133 is involved in estrogen deficiencyinduced
osteoporosis through modulating osteogenic differentiation
of mesenchymal stem cells. Med Sci Monit 2015;27:1527–34.
30. Deliloglu-Gurhan I, Tuglu I, Vatansever HS, Ozdal-Kurt F, Ekren
H, Taylan M, Sen BH. The effect of osteogenic medium on the
adhesion of rat bone marrow stromal cell to the hydroxyapatite.
Saudi Med J 2006;27:305–11.
31. Deliloglu-Gurhan SI, Vatansever HS, Ozdal-Kurt F, Tuglu I.
Characterization of osteoblasts derived from bone marrow stromal
cells in a modified cell culture system. Acta Histochem 2006;108:49–
57.
32. Yuksel S, Guleç MA, Gultekin MZ, Adan›r O, Caglar A, Beytemur
O, Onur Küçüky›ld›r›m B, Avc› A, Subafl› C, ‹nci Ç, Karaoz E.
Comparison of the early period effects of bone marrow-derived mesenchymal
stem cells and platelet-rich plasma on the Achilles tendon
ruptures in rats. Connect Tissue Res 2016;57:360–73.
33. Özdal-Kurt F, Tu¤lu I, Vatansever HS, Tong S, fien BH, Delilo¤lu-
Gürhan SI. The effect of different implant biomaterials on the
behavior of canine bone marrow stromal cells during their differentiation
into osteoblasts. Biotech Histochem 2016;91:412–22.
34. Özdal-Kurt F, Tu¤lu I, Vatansever HS, Tong S, Delilo¤lu-Gürhan
SI. The effect of autologous bone marrow stromal cells differentiated
on scaffolds for canine tibial bone reconstruction. Biotech
Histochem 2015;90:516–28.
35. Jin E, Kim TH, Han S, Kim SW. Amniotic epithelial cells promote
wound healing in mice through high epithelialization and engraftment.
J Tissue Eng Regen Med 2016;10:613–22.
36. Sharma M, Sahu K, Singh SP, Jain B. Wound healing activity of curcumin
conjugated to hyaluronic acid: in vitro and in vivo evaluation.
Artif Cells Nanomed Biotechnol 2018;46:1009–17.
37. Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein
D, Goulis DG. Type 2 diabetes and osteoporosis: a guide to optimal
management. J Clin Endocrinol Metab 2017;102:3621–34.
38. Gadelkarim M, Abushouk AI, Ghanem E, Hamaad AM, Saad AM,
Abdel-Daim MM. Adipose-derived stem cells: effectiveness and
advances in delivery in diabetic wound healing. Biomed Pharmacother
2018;107:625–33.
39. Li LY, Wang XL, Wang GS, Zhao HY. MiR-373 promotes the
osteogenic differentiation of BMSCs from the estrogen deficiency
induced osteoporosis. Eur Rev Med Pharmacol Sci 2019;23:7247–55.
40. Ceylan H, Balc›k OS, Güler MO, Kocabey S, Tekinay AB, Ünal
Gülsüner H. Bone-like mineral nucleating peptide nanofibers
induce differentiation of human mesenchymal stem cells into mature
osteoblasts. Biomacromolecules 2014;15:2407–18.
41. Yang C, Wang Y, Xu H. Correction: Fluoride regulate osteoblastic
transforming growth factor-β1 signaling by mediating recycling of
the Type I eeceptor ALK5. PLoS One 2017;12:e0170674.
42. Chen S, Yi B, Su LB, Zhang YR, Chen CL. In vitro evaluation of a
novel osteo-inductive scaffold for osteogenic differentiation of bonemarrow
mesenchymal stem cells. J Craniofac Surg 2020;31:577–82.
43. Ching HS, Luddin N, Rahman IA, Ponnuraj KT. Expression of
odontogenic and osteogenic markers in DPSCs and SHED: a review.
Curr Stem Cell Res Ther 2017;12:71–9.
44. Kuyucu U, Alpa¤at fi, Bender OM, ‹lkerli E, Köstem fi‹, Güler NT.
Kemik yap›s› ve kemik metabolizmas›nda osteoprotegerin, RANKL
ve RANK iliflkisi. Ankara: Türkiye Endokrinoloji ve Metabolizma
Derne¤i ve Baflkent Üniversitesi T›p Fakültesi; 2010.
45. Lee SH, Oh KN, Han Y, Choi YH, Lee KY. Estrogen receptor ·
regulates Dlx3-mediated osteoblast differentiation. Mol Cells 2016;
39:156–62.
46. Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink, T, Pennisi, CP,
Zachar V. Discrete adipose-derived stem cell subpopulations may
display differential functionality after in vitro expansion despite convergence
to a common phenotype distribution. Stem Cell Res Ther
2016;7:177.
47. Menéndez-Menéndez Y, Otero-Hernández J, Vega JA, Pérez-
Basterrechea M, Pérez-López S, Álvarez-Viejo M, Ferrero-
Gutiérrez A. The role of bone marrow mononuclear cell-conditioned
medium in the proliferation and migration of human dermal
fibroblasts. Cell Mol Biol Lett 2017;22:29.
48. Kruse CR, Singh M, Sørensen JA, Eriksson E, Nuutila K. The effect
of local hyperglycemia on skin cells in vitro and on wound healing in
euglycemic rats. J Surg Res 2016;206:418–26.
49. di Martino O, Tito A, De Lucia A, Cimmino A, Cicotti F, Apone F,
Colucci G, Calabrò V. Hibiscus syriacus extract from an established
cell culture stimulates skin wound healing. Biomed Res Int
2017;2017:7932019.
50. Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, Noguchi
M, Yamauchi N, Tamura I, Tanaka A, Umeda M. High glucose concentrations
suppress the proliferation of human periodontal ligament
stem cells and their differentiation into osteoblasts. J Periodontol
2016;87:e44–51.
51. Zong S, Zeng G, Fang Y, Peng J, Zou B, Gao T, Zhao J. The effects
of α-zearalanol on the proliferation of bone-marrow-derived mesenchymal
stem cells and their differentiation into osteoblasts. J Bone
Miner Metabob 2016;34:151–60.
52. Huang KC, Chuang PY, Yang TY, Huang TW, Chang SF.
Hyperglycemia inhibits osteoblastogenesis of rat bone marrow stromal
cells via activation of the Notch2 signaling pathway. Int J Med
Sci 2019;16:696–703.
Effect of mesenchymal stem cells and their niche on diabetic and osteoporotic wound healing following osteogenic differentiation and bone matrix formation in vitro
Yıl 2019,
Cilt: 13 Sayı: 3, 183 - 192, 31.12.2019
Müge Karakayalı
Tuna Önal
,
Mehmet İbrahim Tuğlu
Öz
Objectives: Mesenchymal stem cells (MSC) and their secreted factors (i.e. niche) are becoming growingly popular in bone
regeneration. The mechanisms of this effect can be investigated through in vitro models which are cost-effective methods
used for determining the effectiveness of new products in experimental and clinical applications. In the present study, we
established an experimental diabetic osteoporosis model in a high-glucose culture medium with no estrogen supplement to
investigate the effect of MSC and their niche which their factors secreted into 24 hours medium on osteoblastic differentiation,
formation of bone islets, and the wound healing model induced by scratch assay.
Methods: A culture medium of adipose-derived rat MSC (ADMSC) with no estrogen supplement was used for cell growth to
assess osteoblastic differentiation and bone islet formation. A wound model was induced using the scratch assay to investigate
the effect of the model on the parameters of wound healing. Cell growth and viability was assessed using MTT assay, cell migration
and differentiation and the amount of wound closure were assessed based on the expression of CD44, CD45, and CD73,
and osteoblast differentiation was evaluated using Alizarin Red S and von Kossa staining. Morphological observations were performed
using an inverted phase-contrast microscope and h-score was assessed with immunohistochemical staining.
Results: The use of osteogenic medium with estrogen supplement led to MSC growth and migration as well as bone islet formation.
The use of a high-glucose medium without estrogen supplement inhibited MSC differentiation and bone islet formation.
The administration of MSC and niche promoted the wound healing initiated by the administration of the scratch assay and
this promotion was significant in terms of all the parameters of wound healing.
Conclusion: The results indicated that the therapeutic effect of MSC and niche could be used as an effective treatment
model in wound healing in patients with diabetic osteoporosis. Moreover, this model could be a cost-effective method for
the new treatment products to be applied in dental and orthopedic practice prior to animal experiments and clinical trials.
Kaynakça
- 1. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal
stem cells: an update. Cell Transplant 2016;25:829–48.
2. Garg P, Mazur MM, Buck AC, Wandtke ME, Liu J, Ebraheim NA.
Preospective review of mesenchymal stem cells differentiation into
osteoblasts. Orthop Surg 2017;9:13–9.
3. Wu ZY, Sun Q, Liu M, Grottkau BE, He ZX, Zou Q, Ye C.
Correlation between the efficacy of stem cell therapy for osteonecrosis
of the femoral head and cell viability. BMC Musculoskelet Disord
2020;21:55.
4. Ciuffreda MC, Malpasso G, Musarò P, Turco V, Gnecchi M.
Protocols for in vitro differentiation of human mesenchymal stem
cells into osteogenic, chondrogenic and adipogenic lineages.
Methods Mol Biol 2016;1416:149–58.
5. Hauzeur JP, De Maertelaer V, Baudoux E, Malaise M, Beguin Y,
Gangji V. Inefficacy of autologous bone marrow concentrate in stage
three osteonecrosis: a randomized controlled double-blind trial. Int
Orthop 2018;42:1429–35.
6. Cheng C, Wentworth K, Shoback DM. New frontiers in osteoporosis
therapy. Annu Rev Med 2020;71:277–88.
7. Murray CE, Coleman CM. Impact of diabetes mellitus on bone
health. Int J Mol Sci 2019;20:19.
8. Rathinavelu S, Guidry-Elizondo C, Banu J. Molecular modulation of
osteoblasts and osteoclasts in type 2 diabetes. J Diabetes Res 2018;
2018:6354787.
9. Karaöz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M.
Characterization of mesenchymal stem cells from rat bone marrow:
ultrastructural properties, differentiation potential and immunophenotypic
markers. Histochem Cell Biol 2009;132:533–46.
10. Karaöz E, Do¤an BN, Aksoy A, Gacar G, Akyüz S, Ayhan S, Genç
ZS, Yürüker S, Duruksu G, Demircan PC, Sariboyaci AE. Isolation
and in vitro characterisation of dental pulp stem cells from natal
teeth. Histochem Cell Biol 2010;133:95–112.
11. Karaöz E, Okçu A, Gacar G, Sa¤lam O, Yürüker S, Kenar H. A comprehensive
characterization study of human bone marrow mscs with
an emphasis on molecular and ultrastructural properties. J Cell
Physiol 2011;226:1367–82.
12. Çelebi B, Elçin YM. Proteome analysis of rat bone marrow mesenchymal
stem cell subcultures. J Proteome Res 2009;8:2164–72.
13. Michael S, Achilleos C, Panayiotou T, Strati K. Inflammation shapes
stem cells and stemness during infection and beyond. Front Cell Dev
Biol 2016;4:118.
14. A¤acayak S, Gülsün B, Karaoz E, Nergiz Y, Uçan MC. Effects of
mesenchymal stem cells in critical size bone defect. Eur Rev Med
Pharmacol Sci 2012;16:679–86.
15. Huang KC, Chuang PY, Yang TY, Huang TW, Chang SF.
Hyperglycemia inhibits osteoblastogenesis of rat bone marrow stromal
cells via activation of the Notch2 signaling pathway. Int J Med
Sci 2019;16:696–703.
16. Jiang H, Wang Y, Meng J, Chen S, Wang J, Qiu Y, Zhao J, Guo T.
Effects of transplanting bone marrow stromal cells transfected with
CXCL13 on fracture healing of diabetic rats. Cell Physiol Biochem
2018;49:123–33.
17. Maycas M, Portolés MT, Matesanz MC, Buendía I, Linares J, Feito
MJ, Arcos D, Vallet-Regí M, Plotkin LI, Esbrit P, Gortázar AR.
High glucose alters the secretome of mechanically stimulated osteocyte-
like cells affecting osteoclast precursor recruitment and differentiation.
J Cell Physiol 2017;232:3611–21.
18. Deng X, Xu M, Shen M, Cheng J. Effects of type 2 diabetic serum
on proliferation and osteogenic differentiation of mesenchymal stem
cells. J Diabetes Res 2018;5765478.
19. Qu B, Gong K, Yang HS, Li YG, Jiang T, Zeng ZM, Cao ZR, Pan
XM. MiR-449 overexpression inhibits osteogenic differentiation of
bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1
pathway in high glucose and free fatty acids microenvironment.
Biochem Biophys Res Commun 2018;496:120–6.
20. Saito A, Nagaishi K, Iba K, Mizue Y, Chikenji T, Otani M, Nakano
M, Oyama K, Yamashita T, Fujimiya M. Umbilical cord extracts
improve osteoporotic abnormalities of bone marrow-derived mesenchymal
stem cells and promote their therapeutic effects on
ovariectomised rats. Sci Rep 2018;8:1161.
21. Zhang M, Li Y, Rao P, Huang K, Luo D, Cai X, Xiao J. Blockade of
receptors of advanced glycation end products ameliorates diabetic
osteogenesis of adipose-derived stem cells through DNA methylation
and Wnt signalling pathway. Cell Prolif 2018;51:e12471.
22. Xie H, Wang Q, Zhang X, Wang T, Hu W, Manicum T, Chen H,
Sun L. Possible therapeutic potential of berberine in the treatment of
STZ plus HFD-induced diabetic osteoporosis. Biomed Pharmacother
2018;108:280–7.
23. Ding X, Yang L, Hu Y, Yu J, Tang Y, Luo D, Zheng L. Effect of local
application of biphosphonates on improving peri-implant osseointegration
in type-2 diabetic osteoporosis. Am J Transl Res 2019;11:
5417–37.
24. Chen Y, Hu Y, Yang L, Zhou J, Tang Y, Zheng L, Qin P. Runx2
alleviates high glucose-suppressed osteogenic differentiation via
PI3K/AKT/GSK3‚/μ-catenin pathway. Cell Biol Int 2017;41:822–
32.
25. Zavatti M, Guida M, Maraldi T, Beretti, F, Bertoni L, La Sala GB,
De Pol A. Estrogen receptor signaling in the ferutinin-induced
osteoblastic differentiation of human amniotic fluid stem cells. Life
Sci 2016;164:15–22.
26. Crescitelli MC, Rauschemberger MB, Cepeda S, Sandoval M,
Massheimer VL. Role of estrone on the regulation of osteoblastogenesis.
Mol Cell Endocrinol 2019;498:110582
27. Gavali S, Gupta MK, Daswani B, Wani MR, Sirdeshmukh R,
Khatkhatay MI. Estrogen enhances human osteoblast survival and
function via promotion of autophagy. Biochim Biophys Acta Mol
Cell Res 2019;1866:1498–507.
28. Sun LJ, Li C, Wen XH, Guo L, Guo ZF, Liao LQ, Guo Y. Icariin
stimulates hFOB 1.19 osteoblast proliferation and differentiation via
OPG/RANKL mediated by the estrogen receptor. Curr Pharm
Biotechnol 2020. doi: 10.2174/1389201021666200123102550. [Epub
ahead of print].
29. Lv H, Sun Y, Zhang Y. MiR-133 is involved in estrogen deficiencyinduced
osteoporosis through modulating osteogenic differentiation
of mesenchymal stem cells. Med Sci Monit 2015;27:1527–34.
30. Deliloglu-Gurhan I, Tuglu I, Vatansever HS, Ozdal-Kurt F, Ekren
H, Taylan M, Sen BH. The effect of osteogenic medium on the
adhesion of rat bone marrow stromal cell to the hydroxyapatite.
Saudi Med J 2006;27:305–11.
31. Deliloglu-Gurhan SI, Vatansever HS, Ozdal-Kurt F, Tuglu I.
Characterization of osteoblasts derived from bone marrow stromal
cells in a modified cell culture system. Acta Histochem 2006;108:49–
57.
32. Yuksel S, Guleç MA, Gultekin MZ, Adan›r O, Caglar A, Beytemur
O, Onur Küçüky›ld›r›m B, Avc› A, Subafl› C, ‹nci Ç, Karaoz E.
Comparison of the early period effects of bone marrow-derived mesenchymal
stem cells and platelet-rich plasma on the Achilles tendon
ruptures in rats. Connect Tissue Res 2016;57:360–73.
33. Özdal-Kurt F, Tu¤lu I, Vatansever HS, Tong S, fien BH, Delilo¤lu-
Gürhan SI. The effect of different implant biomaterials on the
behavior of canine bone marrow stromal cells during their differentiation
into osteoblasts. Biotech Histochem 2016;91:412–22.
34. Özdal-Kurt F, Tu¤lu I, Vatansever HS, Tong S, Delilo¤lu-Gürhan
SI. The effect of autologous bone marrow stromal cells differentiated
on scaffolds for canine tibial bone reconstruction. Biotech
Histochem 2015;90:516–28.
35. Jin E, Kim TH, Han S, Kim SW. Amniotic epithelial cells promote
wound healing in mice through high epithelialization and engraftment.
J Tissue Eng Regen Med 2016;10:613–22.
36. Sharma M, Sahu K, Singh SP, Jain B. Wound healing activity of curcumin
conjugated to hyaluronic acid: in vitro and in vivo evaluation.
Artif Cells Nanomed Biotechnol 2018;46:1009–17.
37. Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein
D, Goulis DG. Type 2 diabetes and osteoporosis: a guide to optimal
management. J Clin Endocrinol Metab 2017;102:3621–34.
38. Gadelkarim M, Abushouk AI, Ghanem E, Hamaad AM, Saad AM,
Abdel-Daim MM. Adipose-derived stem cells: effectiveness and
advances in delivery in diabetic wound healing. Biomed Pharmacother
2018;107:625–33.
39. Li LY, Wang XL, Wang GS, Zhao HY. MiR-373 promotes the
osteogenic differentiation of BMSCs from the estrogen deficiency
induced osteoporosis. Eur Rev Med Pharmacol Sci 2019;23:7247–55.
40. Ceylan H, Balc›k OS, Güler MO, Kocabey S, Tekinay AB, Ünal
Gülsüner H. Bone-like mineral nucleating peptide nanofibers
induce differentiation of human mesenchymal stem cells into mature
osteoblasts. Biomacromolecules 2014;15:2407–18.
41. Yang C, Wang Y, Xu H. Correction: Fluoride regulate osteoblastic
transforming growth factor-β1 signaling by mediating recycling of
the Type I eeceptor ALK5. PLoS One 2017;12:e0170674.
42. Chen S, Yi B, Su LB, Zhang YR, Chen CL. In vitro evaluation of a
novel osteo-inductive scaffold for osteogenic differentiation of bonemarrow
mesenchymal stem cells. J Craniofac Surg 2020;31:577–82.
43. Ching HS, Luddin N, Rahman IA, Ponnuraj KT. Expression of
odontogenic and osteogenic markers in DPSCs and SHED: a review.
Curr Stem Cell Res Ther 2017;12:71–9.
44. Kuyucu U, Alpa¤at fi, Bender OM, ‹lkerli E, Köstem fi‹, Güler NT.
Kemik yap›s› ve kemik metabolizmas›nda osteoprotegerin, RANKL
ve RANK iliflkisi. Ankara: Türkiye Endokrinoloji ve Metabolizma
Derne¤i ve Baflkent Üniversitesi T›p Fakültesi; 2010.
45. Lee SH, Oh KN, Han Y, Choi YH, Lee KY. Estrogen receptor ·
regulates Dlx3-mediated osteoblast differentiation. Mol Cells 2016;
39:156–62.
46. Nielsen FM, Riis SE, Andersen JI, Lesage R, Fink, T, Pennisi, CP,
Zachar V. Discrete adipose-derived stem cell subpopulations may
display differential functionality after in vitro expansion despite convergence
to a common phenotype distribution. Stem Cell Res Ther
2016;7:177.
47. Menéndez-Menéndez Y, Otero-Hernández J, Vega JA, Pérez-
Basterrechea M, Pérez-López S, Álvarez-Viejo M, Ferrero-
Gutiérrez A. The role of bone marrow mononuclear cell-conditioned
medium in the proliferation and migration of human dermal
fibroblasts. Cell Mol Biol Lett 2017;22:29.
48. Kruse CR, Singh M, Sørensen JA, Eriksson E, Nuutila K. The effect
of local hyperglycemia on skin cells in vitro and on wound healing in
euglycemic rats. J Surg Res 2016;206:418–26.
49. di Martino O, Tito A, De Lucia A, Cimmino A, Cicotti F, Apone F,
Colucci G, Calabrò V. Hibiscus syriacus extract from an established
cell culture stimulates skin wound healing. Biomed Res Int
2017;2017:7932019.
50. Kato H, Taguchi Y, Tominaga K, Kimura D, Yamawaki I, Noguchi
M, Yamauchi N, Tamura I, Tanaka A, Umeda M. High glucose concentrations
suppress the proliferation of human periodontal ligament
stem cells and their differentiation into osteoblasts. J Periodontol
2016;87:e44–51.
51. Zong S, Zeng G, Fang Y, Peng J, Zou B, Gao T, Zhao J. The effects
of α-zearalanol on the proliferation of bone-marrow-derived mesenchymal
stem cells and their differentiation into osteoblasts. J Bone
Miner Metabob 2016;34:151–60.
52. Huang KC, Chuang PY, Yang TY, Huang TW, Chang SF.
Hyperglycemia inhibits osteoblastogenesis of rat bone marrow stromal
cells via activation of the Notch2 signaling pathway. Int J Med
Sci 2019;16:696–703.