Araştırma Makalesi
BibTex RIS Kaynak Göster

On The Automorphism Groups of Free Nilpotent Lie Algebras

Yıl 2019, Cilt: 7 Sayı: 3, 403 - 405, 28.09.2019
https://doi.org/10.21541/apjes.552208

Öz

Let L(m,k) be the free nilpotent of class k Lie algebra of finite rank m, m≥2 over a field of characteristic zero. In this study, we give necessary and sufficient conditions on  the equalities of the central automorhisms group of L(m,k) to the IA-automorphisms group and inner automorphisms group of L(m,k)

Kaynakça

  • [1] J. E. AdneyT.Yen, Automorphisms of p-groups, Illinois J. Math. 9(1965), 137-143.
  • [2] M. S. Attar, “On central automorphisms that fix the centre elementwise”, Arch. Math., vol. 89, pp. 296-297, 2007.
  • [3] M. J. Curran, “Finite groups with central automorphism group of minimal order”, Math. Proc. R. Ir. Acad., vol. 104, no. A2, pp. 223-229, 2004.
  • [4] M. J. Curran, D. J. McCaughnan, “Central automorphisms that are almost inner”, Communications in Algebra, vol. 29, no. 5, pp. 2081-2087, 2001.
  • [5] M. Drensky, “Automorphisms of free nilpotent Lie algebras Can. J. Math., vol. 13, no. 2, pp. 259-279, 1990.
  • [6] Z. Esmerligil, “On central automorphisms of free center-by-metabelian Lie algebras”, IARJSET, vol. 3, no. 7, 2016.
  • [7] Ş. Fındık, “Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras”, Serdica Math. J, 36, pp. 170-210, 2010.
  • [8] G. Mashevitzky, B. Plotkin, E. Plotkin, “Automorphisms of the category of free Lie algebras”, Journal of Algebra, vol. 283, no. 2, pp. 490-512, 2004.
  • [9] Ö. Öztekin, N. Ekici, “Central automorphisms of free nilpotent Lie algebras”, Journal of Algebra and its Applications, Doi. 1750205., 2016.
  • [10] V. Romankov, “On the automorphism group of a free metabelian Lie algebra”, International Journal of Algebra and Computation, vol. 18, no. 1, pp. 1–18, 2008.

Serbest Nilpotent Lie Cebirlerinin Otomorfizm Grupları Üzerine

Yıl 2019, Cilt: 7 Sayı: 3, 403 - 405, 28.09.2019
https://doi.org/10.21541/apjes.552208

Öz

Lm,k karakteristiği sıfır olan bir cisim üzerinde
sonlu m,m>2 
rankına sahip, k- yıncı sınıftan
serbest nilpotent
Lie cebiri
olsun.
Lm,k nın IA- otomorfizm
grubu ile iç otomorfizm grubunun merkezi otomorfizm grubuna eşit olması için gerek
ve yeter koşulları belirledik.

Kaynakça

  • [1] J. E. AdneyT.Yen, Automorphisms of p-groups, Illinois J. Math. 9(1965), 137-143.
  • [2] M. S. Attar, “On central automorphisms that fix the centre elementwise”, Arch. Math., vol. 89, pp. 296-297, 2007.
  • [3] M. J. Curran, “Finite groups with central automorphism group of minimal order”, Math. Proc. R. Ir. Acad., vol. 104, no. A2, pp. 223-229, 2004.
  • [4] M. J. Curran, D. J. McCaughnan, “Central automorphisms that are almost inner”, Communications in Algebra, vol. 29, no. 5, pp. 2081-2087, 2001.
  • [5] M. Drensky, “Automorphisms of free nilpotent Lie algebras Can. J. Math., vol. 13, no. 2, pp. 259-279, 1990.
  • [6] Z. Esmerligil, “On central automorphisms of free center-by-metabelian Lie algebras”, IARJSET, vol. 3, no. 7, 2016.
  • [7] Ş. Fındık, “Normal and normally outer automorphisms of free metabelian nilpotent Lie algebras”, Serdica Math. J, 36, pp. 170-210, 2010.
  • [8] G. Mashevitzky, B. Plotkin, E. Plotkin, “Automorphisms of the category of free Lie algebras”, Journal of Algebra, vol. 283, no. 2, pp. 490-512, 2004.
  • [9] Ö. Öztekin, N. Ekici, “Central automorphisms of free nilpotent Lie algebras”, Journal of Algebra and its Applications, Doi. 1750205., 2016.
  • [10] V. Romankov, “On the automorphism group of a free metabelian Lie algebra”, International Journal of Algebra and Computation, vol. 18, no. 1, pp. 1–18, 2008.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özge Öztekin 0000-0001-7421-5600

Cennet Eskal 0000-0002-0454-6700

Yayımlanma Tarihi 28 Eylül 2019
Gönderilme Tarihi 11 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

IEEE Ö. Öztekin ve C. Eskal, “Serbest Nilpotent Lie Cebirlerinin Otomorfizm Grupları Üzerine”, APJES, c. 7, sy. 3, ss. 403–405, 2019, doi: 10.21541/apjes.552208.