In this study, the effect of evaporator pinch point temperature difference (∆TPP,e) value in Organic Rankine Cycle (ORC) on system performance was determined. Under different applications of ORC, optimum ∆TPP,e value has been determined in ORC systems designed with different heat source temperatures. By changing the ∆TPP,e value, the heat input provided to the system, the mass flow of organic fluid, the evaporation pressure and the enthalpy drop in the turbine are affected. In thermodynamic optimization, the objective function is determined as turbine power maximization. Genetic algorithm optimization technique is used. Within the scope of low and high temperature ORC applications, the optimum ∆TPP,e value of different organic fluids under 10 different heat source temperatures (Low, 90-130 °C; High, 250-290 °C) has been determined. Low temperature organic fluids have been selected from dry, isentropic, wet and new-generation categories. High temperature organic fluids have been selected from the alkane, aromatic hydrocarbon, and siloxane categories. The effect of ∆TPP,e on fluids of different categories was determined for low and high temperature ORCs. It has been determined that taking the ∆TPP,e value constant regardless of the heat source temperature and organic fluid causes performance loss in ORC.
Genetic Algorithm Low-High Organic Fluids Optimum Pinch Point Organic Rankine Cycle Thermodynamic Optimization
Birincil Dil | İngilizce |
---|---|
Konular | Yapay Zeka |
Bölüm | Araştırma Makaleleri |
Yazarlar | |
Erken Görünüm Tarihi | 20 Ocak 2022 |
Yayımlanma Tarihi | 1 Ocak 2022 |
Gönderilme Tarihi | 6 Ağustos 2021 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 10 Sayı: 1 |
Academic Platform Journal of Engineering and Smart Systems