Research Article
BibTex RIS Cite
Year 2023, Volume: 11 Issue: 2, 87 - 94, 18.05.2023
https://doi.org/10.21541/apjess.1223846

Abstract

References

  • R. H. Karol, Chemical grouting and soil stabilization. New York: M. Dekker, 2003.
  • S. Perret, D. Palardy, G. Ballivy, “Rheological Behavior and Setting Time of Microfine Cement-Based Grouts,” ACI Materials Journal, vol. 97, no. 4, 2000, doi: 10.14359/7413.
  • A. Özocak, “Grouting Model Experiments with Micro-Cement,” Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, 1994.
  • M. İncecik, A. Özocak, “İnce Daneli Çimento Enjeksiyon Model Deneyleri,” Zemin Mekaniği ve Temel Mühendisliği 5. Ulusal Kongresi, O.D.T.Ü., Ankara, s:486-497. 1994.
  • A. Gökdemir, K. Yıldız, “Microcem 525 çimento enjeksiyonunun düşük poroziteli Zeminlerin basınç dayanımına etkisi,” e-Journal of New World Sciences Academy Natural and Applied Sciences, vol. 2, no.2, A0025, pp. 133-146, 2007.
  • E. Tekin, İnce Taneli Çimento (Rheocem 900) Karışımlarının Reolojik Özellikleri, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 26, no. 4, pp.777-785, 2011.
  • S. Zebovitz, R. J. Krizek, and D. K. Atmatzidis, “Injection of Fine Sands with Very Fine Cement Grout,” Journal of Geotechnical Engineering, vol. 115, no. 12, pp. 1717–1733, 1989, doi:10.1061/(asce)0733-9410(1989)115:12(1717).
  • J. Warner, Soil solidification with ultrafine cement grout. Proceedings of the third International Conference, Geotechnical Special Publication, Reston, ASCE, February 10-12, New Orleans, USA. pp 1360-1371, 2003.
  • D. N. Christodoulou, A. I. Droudakis, I. A. Pantazopoulos, I. N. Markou, D. K. Atmatzidis, Groutability and Effectiveness of Microfine Cement Grouts, In: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, pp. 2232-2235, 2009, 10.3233/978-1-60750-031-5-2232.
  • I. N. Markou and A. I. Droudakis, “Shear strength of microfine cement grouted sands,” Proceedings of the Institution of Civil Engineers - Ground Improvement, vol. 166, no. 3, pp. 177–186, 2013, https://doi.org/10.1680/grim.12.00016
  • K. Hashimoto, S. Nishihara, S. Oji, T. Kanazawa, S. Nishie, I. Seko, et al., Field testing of permeation grouting using microfine cement, Proc. Instit. Civ. Eng.-Ground Improvement, vol. 169 no. 2, pp. 134-142, 2016, https://doi.org/10.1680/jgrim.15.00030.
  • L. G. Schwarz, R. J. Krizek, Effect of preparation technique on permeability and strength of cement-grouted sand, Geotechnical Testing Journal, vol. 17, no .4, pp. 434-443, 1994, https://doi.org/10.1520/GTJ10304J.
  • E. Avci and M. Mollamahmutoğlu, “Syneresis dependent shear strength parameters of sodium silicate grouted sands,” Quarterly Journal of Engineering Geology and Hydrogeology, vol. 52, no. 1, pp. 99–109, 2018, https://doi.org/10.1144/qjegh2017-080
  • P. H. Chuang, Use of fuzzy sets for evaluating shear strength of soils, Computers and Geotechnics, vol. 17, no. 4, pp. 425-446, 1995, https://doi.org/10.1016/0266-352X(95)94914-C
  • Y.-T. Huang and T. J. Siller, “Fuzzy representation and reasoning in geotechnical site characterization,” Computers and Geotechnics, vol. 21, no. 1, pp. 65–86, Jan. 1997, doi: 10.1016/s0266-352x(95)00013-z.
  • F. Saboya, M. da Glória Alves, W. Dias Pinto, “Assessment of failure susceptibility of soil slopes using fuzzy logic,” Engineering Geology, vol. 86, no. 4, pp. 211–224, 2006, https://doi.org/10.1016/j.enggeo.2006.05.001.
  • P. V. S. Reddy, K. M. Rao, C. S. Rani, Identification of expansive soils and assessment of expansion potential by fuzzy approach. Electronic Journal of Geotechnical Engineering, vol. 14, pp. 1-11. 2009.
  • I. Zorluer, Y. Icaga, S. Yurtcu, and H. Tosun, “Application of a fuzzy rule-based method for the determination of clay dispersibility,” Geoderma, vol. 160, no. 2, pp. 189–196, Dec. 2010, doi: 10.1016/j.geoderma.2010.09.017.
  • A. Özocak and Ş. Yurtcu, “Ince Daneli Zeminlerde Sikişma Indisi’nin Istatistiksel ve Yapay Zeka Yöntemleri ile Tahmin Edilmesi,” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 31, no. 3, 2016, doi: 10.17341/gummfd.95986.
  • U. S. Cavus, M. Kilit, İ. Zorluer, and T. B. Edil, “Fuzzy logic-based assessment of seismic soil liquefaction potential and its application to foundations of bridge piers,” Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6, pp. 6001–6011, 2019, doi: 10.3233/jifs-181795.
  • E. Avcı, E, “Ultra ince taneli (spinor a6) süspansiyon enjeksiyonunun, solüsyon türü kimyasal enjeksiyonlara alternatifliğinin araştırılması,” Doktora Tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, 2015.
  • E. Avcı, “Farklı rölatif sıkılık ve tane dağılımına sahip kum zeminlerde Ultrafin 12 enjeksiyonu permeasyon yetisi”, Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, 2009.
  • ASTM D4219-02, Standard Test Method for Unconfined Compressive Strength Index of Chemical- Grouted Soils, West Conshohocken: ASTM International, 2002.
  • L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2, pp. 94–102, Feb. 1968, doi: 10.1016/s0019-9958(68)90211-8.
  • Ç. Elmas, Bulanık Mantık Denetleyiciler (Kuram, Uygulama, Sinirsel Bulanık Mantık), Seçkin Yayıncılık, 2003.
  • M. Monjezi, M. Rezaei, and A. Yazdian Varjani, “Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 8, pp. 1273–1280, 2009, doi: 10.1016/j.ijrmms.2009.05.005.
  • G.W. Nurcahyo, S.M. Shamsuddin, R.A. Alias, M.N.M. Sap, Selection of defuzzification method to obtain crisp value for representing uncertain data in a modified sweep algorithm, Journal of Computer Science and Technology, vol. 3, no. 2, pp. 22-28, 2003.

Prediction of Unconfined Compressive Strength of Microfine Cement Injected Sands Using Fuzzy Logic Method

Year 2023, Volume: 11 Issue: 2, 87 - 94, 18.05.2023
https://doi.org/10.21541/apjess.1223846

Abstract

In this study, unconfined compressive strength values of sand soil injected with microfine cement were predicted using fuzzy logic method. Mamdani and Sugeno methods were applied in the fuzzy logic models. In addition, a regression analysis was carried out in order to compare these two methods. In the models, water/cement ratio and injection pressure were the input variables, and unconfined compressive strength was the output variable. The dataset includes 427 samples, which were experimentally injected with microfine cement. Predictions for unconfined compressive strength were obtained by creating membership functions and rule base for each input (predictive) parameter in fuzzy logic models. The coefficient of determination (R2) and Mean Square Error (MSE) were used as criteria for evaluating the performance of the developed models. The results suggested that the three applied models (i.e. Mamdani, Sugeno and regression) provided statistically significant results, and these methods could be used in the future prediction-based studies. The results showed that Sugeno model provided the best performance for predicting unconfined compressive strength. It was followed by Mamdani and Regression models, respectively. This study has suggested that the fuzzy logic method can be an alternative to the regression method which traditionally has been used in prediction process.

References

  • R. H. Karol, Chemical grouting and soil stabilization. New York: M. Dekker, 2003.
  • S. Perret, D. Palardy, G. Ballivy, “Rheological Behavior and Setting Time of Microfine Cement-Based Grouts,” ACI Materials Journal, vol. 97, no. 4, 2000, doi: 10.14359/7413.
  • A. Özocak, “Grouting Model Experiments with Micro-Cement,” Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, 1994.
  • M. İncecik, A. Özocak, “İnce Daneli Çimento Enjeksiyon Model Deneyleri,” Zemin Mekaniği ve Temel Mühendisliği 5. Ulusal Kongresi, O.D.T.Ü., Ankara, s:486-497. 1994.
  • A. Gökdemir, K. Yıldız, “Microcem 525 çimento enjeksiyonunun düşük poroziteli Zeminlerin basınç dayanımına etkisi,” e-Journal of New World Sciences Academy Natural and Applied Sciences, vol. 2, no.2, A0025, pp. 133-146, 2007.
  • E. Tekin, İnce Taneli Çimento (Rheocem 900) Karışımlarının Reolojik Özellikleri, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 26, no. 4, pp.777-785, 2011.
  • S. Zebovitz, R. J. Krizek, and D. K. Atmatzidis, “Injection of Fine Sands with Very Fine Cement Grout,” Journal of Geotechnical Engineering, vol. 115, no. 12, pp. 1717–1733, 1989, doi:10.1061/(asce)0733-9410(1989)115:12(1717).
  • J. Warner, Soil solidification with ultrafine cement grout. Proceedings of the third International Conference, Geotechnical Special Publication, Reston, ASCE, February 10-12, New Orleans, USA. pp 1360-1371, 2003.
  • D. N. Christodoulou, A. I. Droudakis, I. A. Pantazopoulos, I. N. Markou, D. K. Atmatzidis, Groutability and Effectiveness of Microfine Cement Grouts, In: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, pp. 2232-2235, 2009, 10.3233/978-1-60750-031-5-2232.
  • I. N. Markou and A. I. Droudakis, “Shear strength of microfine cement grouted sands,” Proceedings of the Institution of Civil Engineers - Ground Improvement, vol. 166, no. 3, pp. 177–186, 2013, https://doi.org/10.1680/grim.12.00016
  • K. Hashimoto, S. Nishihara, S. Oji, T. Kanazawa, S. Nishie, I. Seko, et al., Field testing of permeation grouting using microfine cement, Proc. Instit. Civ. Eng.-Ground Improvement, vol. 169 no. 2, pp. 134-142, 2016, https://doi.org/10.1680/jgrim.15.00030.
  • L. G. Schwarz, R. J. Krizek, Effect of preparation technique on permeability and strength of cement-grouted sand, Geotechnical Testing Journal, vol. 17, no .4, pp. 434-443, 1994, https://doi.org/10.1520/GTJ10304J.
  • E. Avci and M. Mollamahmutoğlu, “Syneresis dependent shear strength parameters of sodium silicate grouted sands,” Quarterly Journal of Engineering Geology and Hydrogeology, vol. 52, no. 1, pp. 99–109, 2018, https://doi.org/10.1144/qjegh2017-080
  • P. H. Chuang, Use of fuzzy sets for evaluating shear strength of soils, Computers and Geotechnics, vol. 17, no. 4, pp. 425-446, 1995, https://doi.org/10.1016/0266-352X(95)94914-C
  • Y.-T. Huang and T. J. Siller, “Fuzzy representation and reasoning in geotechnical site characterization,” Computers and Geotechnics, vol. 21, no. 1, pp. 65–86, Jan. 1997, doi: 10.1016/s0266-352x(95)00013-z.
  • F. Saboya, M. da Glória Alves, W. Dias Pinto, “Assessment of failure susceptibility of soil slopes using fuzzy logic,” Engineering Geology, vol. 86, no. 4, pp. 211–224, 2006, https://doi.org/10.1016/j.enggeo.2006.05.001.
  • P. V. S. Reddy, K. M. Rao, C. S. Rani, Identification of expansive soils and assessment of expansion potential by fuzzy approach. Electronic Journal of Geotechnical Engineering, vol. 14, pp. 1-11. 2009.
  • I. Zorluer, Y. Icaga, S. Yurtcu, and H. Tosun, “Application of a fuzzy rule-based method for the determination of clay dispersibility,” Geoderma, vol. 160, no. 2, pp. 189–196, Dec. 2010, doi: 10.1016/j.geoderma.2010.09.017.
  • A. Özocak and Ş. Yurtcu, “Ince Daneli Zeminlerde Sikişma Indisi’nin Istatistiksel ve Yapay Zeka Yöntemleri ile Tahmin Edilmesi,” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, vol. 31, no. 3, 2016, doi: 10.17341/gummfd.95986.
  • U. S. Cavus, M. Kilit, İ. Zorluer, and T. B. Edil, “Fuzzy logic-based assessment of seismic soil liquefaction potential and its application to foundations of bridge piers,” Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6, pp. 6001–6011, 2019, doi: 10.3233/jifs-181795.
  • E. Avcı, E, “Ultra ince taneli (spinor a6) süspansiyon enjeksiyonunun, solüsyon türü kimyasal enjeksiyonlara alternatifliğinin araştırılması,” Doktora Tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, 2015.
  • E. Avcı, “Farklı rölatif sıkılık ve tane dağılımına sahip kum zeminlerde Ultrafin 12 enjeksiyonu permeasyon yetisi”, Yüksek Lisans tezi, Fen Bilimleri Enstitüsü, Gazi Üniversitesi, Ankara, 2009.
  • ASTM D4219-02, Standard Test Method for Unconfined Compressive Strength Index of Chemical- Grouted Soils, West Conshohocken: ASTM International, 2002.
  • L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2, pp. 94–102, Feb. 1968, doi: 10.1016/s0019-9958(68)90211-8.
  • Ç. Elmas, Bulanık Mantık Denetleyiciler (Kuram, Uygulama, Sinirsel Bulanık Mantık), Seçkin Yayıncılık, 2003.
  • M. Monjezi, M. Rezaei, and A. Yazdian Varjani, “Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic,” International Journal of Rock Mechanics and Mining Sciences, vol. 46, no. 8, pp. 1273–1280, 2009, doi: 10.1016/j.ijrmms.2009.05.005.
  • G.W. Nurcahyo, S.M. Shamsuddin, R.A. Alias, M.N.M. Sap, Selection of defuzzification method to obtain crisp value for representing uncertain data in a modified sweep algorithm, Journal of Computer Science and Technology, vol. 3, no. 2, pp. 22-28, 2003.
There are 27 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Articles
Authors

Eray Yıldırım 0000-0002-5134-0625

Eyubhan Avcı 0000-0001-7206-0158

Nurten Akgün Tanbay 0000-0003-3888-3913

Early Pub Date May 18, 2023
Publication Date May 18, 2023
Submission Date December 24, 2022
Published in Issue Year 2023 Volume: 11 Issue: 2

Cite

IEEE E. Yıldırım, E. Avcı, and N. Akgün Tanbay, “Prediction of Unconfined Compressive Strength of Microfine Cement Injected Sands Using Fuzzy Logic Method”, APJESS, vol. 11, no. 2, pp. 87–94, 2023, doi: 10.21541/apjess.1223846.

Academic Platform Journal of Engineering and Smart Systems