Araştırma Makalesi
BibTex RIS Kaynak Göster

A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance

Yıl 2023, Cilt: 23 Sayı: 2, 868 - 891, 31.07.2023
https://doi.org/10.11616/asbi.1218373

Öz

In this study, it’s aimed to propose a performance measurement model that will reveal the effects of recycling industrial solid waste on sustainable supply chain performance. Furthermore, it’s aimed to evaluate the effects of plastic, glass, steel and aluminum recycling on economic and environmental sustainability performance with the proposed model. It’s expected that the scope of this model and the determination of the recycling results of different industrial wastes with the same indicators will contribute to the literature. After running the model for two-year period, the contribution of recycled plastics to sustainability performance will reach 39%, glasses 31%, steels 44% and aluminums 47%. The largest contribution rate of recycling in terms of energy consumption is in aluminums. In terms of cost and profitability criteria including opportunity cost, the highest contribution rate is in steels.

Kaynakça

  • Agarwal, A. F., Giraud-Carrie. and Li, Y. (2018), A Mediation Model of Green Supply Chain Management Adoption: The Role of Internal Impetus, International Journal of Production Economics, 205, s.342–358.
  • Alamerew, Y. A. and Brissaud, D. (2020), Modelling Reverse Supply Chain Through System Dynamics for Realizing the Transition Towards the Circular Economy: A Case Study on Electric Vehicle Batteries, Journal of Cleaner Production, 254.
  • Ali, S.S., Paksoy, T., Torğul, B. and Kaur, R. (2020), Reverse Logistics Optimization of An İndustrial Air Conditioner Manufacturing Company for Designing Sustainable Supply Chain: A Fuzzy Hybrid Multi-Criteria Decision-Making Approach, Wireless Networks, 26, s.5759–5782.
  • Angelis-Dimakis, A., Arampatzis, G. and Assimacopoulos, D. (2016), Systemic Eco-Efficiency Assessment of Meso-Level Water Use Systems, Journal of Cleaner Production, 138 (2), s.195-207.
  • Avsec, S. and Kaucic, B. (2018), Eco-Efficient Decision Support Model of Solid Waste Recycling, Environmental Engineering and Management Journal, 17(5), s.1149-1159
  • Beiler, B. C., Ignácio, P. S. A., Júnior, A. C. P., Anholon, R. and Rampasso, I. S. (2020), Reverse Logistics System Analysis of A Brazilian Beverage Company: An Exploratory Study, Journal of Cleaner Production, 274, s.20.
  • Benavides, P. T., Dunn, J. B., Han, J., Biddy, M. and Markham, J. (2018), Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived Pet Bottles, ACS Sustainable Chem. Eng. 6, s.9725−9733.
  • Benner, J. H. B., Otten, M., Wielders, L. M. L. and Vroonhof, J. T. W. (2007), CO2-kentallen Afvalscheiding, CE Delft, Delft.
  • British Glass Recycling. (2003), Glass Recycling - Life Cycle Carbon Dioxide Emissions. The Access Date: 05.06.2021: http://www.packagingfedn.co.uk/images/reports/Enviros_Report.pdf.
  • Cevik Aka, D. (2022), Endüstriyel Katı Atık Geri Dönüşümünün Çevresel ve Ekonomik Performansa Etkisini Belirlemeye Yönelik Bir Sistem Dinamiği Modeli Önerisi, Doktora Tezi, Sakarya Üniversitesi, İşletme Enstitüsü, Sakarya, Tez No: 764629.
  • Chaudhary, K. and Vrat, P. (2020), Circular Economy Model of Gold Recovery from Cell Phones Using System Dynamics Approach: A Case Study of India, Environment, Development and Sustainability, 22, s.173–200.
  • Chaves, G. D. D., Siman, R. R. and Chang, N. B. (2021), Policy Analysis for Sustainable Refuse-Derived Fuel Production in Espirito Santo Brazil, Journal of Cleaner Production, 294.
  • Chen, Y-C. and Liu, H-M. (2021), Evaluation of Greenhouse Gas Emissions and The Feed-in System of Waste-To-Energy Facilities Using A System Dynamics Model, Science of the Total Environment, 792.
  • Cucchiella, F., D’Adamo, I., Gastaldi, M. and Lenny Koh, S. C. (2014), Implementation of A Real Option in A Sustainable Supply Chain: An Empirical Study of Alkaline Battery Recycling, International Journal of Systems Science, 45(6), s.1268-1282.
  • Dahlström, K. and Ekins, P. (2007), Combining Economic and Environmental Dimensions: Value Chain Analysis of UK Aluminium Flows, Resources Conservation and Recycling, 51(3), s.560.
  • Das, D. (2018), The Impact of Sustainable Supply Chain Management Practices on Firm Performance: Lessons From Indian Organizations, Journal of Cleaner Production, 203, s.179-196.
  • Das, D. and Dutta, P. (2013), A System Dynamics Framework for İntegrated Reverse Supply Chain With Three Way Recovery and Product Exchange Policy, Computers and Industrial Engineering, 66(4), s.720-733.
  • Ding, Z., Yi, G., Tam, V. W. Y. and Huang, T. (2016), A System Dynamics-Based Environmental Performance Simulation of Construction Waste Reduction Management in China, Waste Manag, 51, s.130-141.
  • Döngüsel Ekonomi ve Atık Yönetimi Dairesi Başkanlığı. (2022), Sanayi Atıklarının Yönetimi” Yayınlanmamış Raporu, Çevre Yönetimi Genel Müdürlüğü.
  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos T., Luo, Z. and Roubaud, D. (2020), Upstream Supply Chain Visibility and Complexity Effect on Focal Company’s Sustainable Performance: Indian Manufacturers’ Perspective, Annals of Opr. Res., 290, s.343-67.
  • European Commission. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, The Access Date: 07.09.2021: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098andfrom=EN.
  • Farel, R., Yannou, B., Ghaffari, A. and Leroy. Y. (2013), A Cost and Benefit Analysis of Future End-of-Life Vehicle Glazing Recycling in France: A Systematic Approach. Resources, Conservation and Recycling, 74, s.54-65.
  • Farrokh, M., Azar, A., Jandaghi, G. and Ahmadi, E. (2018), A Novel Robust Fuzzy Stochastic Programming for Closed Loop Supply Chain Network Design Under Hybrid Uncertainty, Fuzzy Sets and Systems, 341, s.69-91.
  • Feitó-Cespón, M., Sarache, W., Piedra-Jimenez, F. and Cespón-Castroc, R. (2017), Redesign of A Sustainable Reverse Supply Chain Under Uncertainty: A Case Study, Journal of Cleaner Production, 151, s.206-217.
  • Forrester J. W. (1961). Industrial Dynamics. Portland: Productivity Press.
  • Forrester, J. W. (1994), System Dynamics, Systems Thinking, and Soft OR, Syst. Dynam. Rev. 10 (2–3), s.245–256.
  • Giannis, A., Chen, M., Yin, K., Tong, H. and Veksha, A. (2017), Application of System Dynamics Modeling for Evaluation of Different Recycling Scenarios in Singapore, Journal of Material Cycles and Waste Management, 19, s.1177–1185.
  • Global Aluminium Cycle (2017), Methodology - Resources, Conservation and Recycling, 125, s.48-69. Govindan, K., Jha, P. C., Agarwal, V. and Darbari, J. D. (2019), Environmental Management Partner Selection for Reverse Supply Chain Collaboration: A Sustainable Approach, Journal of Environmental Management, 236, s.784-797.
  • Gradus, R. H. J. M., Nillesen, P. H. L., Dijkgraaf, E. and Koppen, R. J. (2017), A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastic Waste, Ecological Economics, 135, s.22-28.
  • Gu, F., Hall, P., Guo, J-F. and Summers, P. A. (2017), From Waste Plastics to Industrial Raw Materials: A Life Cycle Assessment of Mechanical Plastic Recycling Practice Based on A Real-World Case Study, Sci. Total Environ., 601-602, s.1192-1207.
  • Haghighi, S. M., Torabi, S. A. and Ghasemi, R. (2016), An Integrated Approach for Performance Evaluation in Sustainable Supply Chain Networks (with A Case Study), Journal of Cleaner Production, 137, s.579-597.
  • Haryani, T. and Subriadi, A. P. (2021), E-Commerce Acceptance in the Dimension of Sustainability, Journal of Modelling in Management, 17(2).
  • Hilmann, K., Damgaard, A., Eriksson, O., Jonsson, D. and Fluck, L. (2015). Climate Benefits of Material Recycling Inventory of Average Greenhouse Gas Emissions for Denmark, Norway and Sweden. Norden, ISBN 978-92-893-4218-6.
  • Jafari, H. R., Seifbarghy, M. and Omidvari, M. (2017), Sustainable Supply Chain Design with Water Environmental Impacts and Justice-Oriented Employment Considerations: A Case Study in Textile İndustry, Scientia Iranica. Transaction E, Industrial Engineering, Tehran 24(4), s.2119-2137.
  • Khazhiakhmetova, R., Kashuba, I., Vlasova, S., Kapustin, F. and Hela, R. (2020), The Transparent Discolored Glass for Industrial and High-Speed Transport, MATEC Web of Conferences, 329.
  • Khoo, H. H. (2019), LCA of Plastic Waste Recovery into Recycled Materials, Energy and Fuels in Singapore, Resources, Conservation and Recycling, 145, s.67-77.
  • Kovacic, M., Stopar, K., Vertnik, R. and Šarler, B. (2019), Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A Pilot Study, Energies, 12(11), s.2142.
  • Kumar, R. and Kumar, V. (2014), Barriers in Implementation of Lean Manufacturing System in Indian Industry: A Survey, International Journal of Latest Trends in Engineering, 4(2), s.243-251.
  • Kumar, S., Smith, S.R., Fowler, G., Velis, C., Kumar, S.J., Arya, S., R., Kumar, R. and Cheeseman, C. (2017), Challenges and Opportunities Associated with Waste Management in India, R. Soc. Open Sci. 4, 160764.
  • Lagarda‑Leyva, E. A., Morales‑Mendoza, L. F., Ríos‑Vázquez, N. J., Ayala‑Espinoza, A. and Nieblas‑Armenta, C. K. (2019), Managing Plastic Waste From Agriculture Through Reverse Logistics and Dynamic Modeling, Clean Technologies and Environmental Policy, 21, s.1415–1432.
  • Landi, D., Germani, M. and Marconi, M. (2019), Analyzing the Environmental Sustainability of Glass Bottles Reuse in An Italian Wine Consortium, Procedia CIRP 80, s.399-404.
  • Larsen, A. W., Merrild, H. and Christensen, T. H. (2009), Recycling of Glass: Accounting of Greenhouse Gases and Global Warming Contributions. ISWA. https://doi.org/10.1177/0734242X09342148.
  • Leblanc, R. (2019), Quick Facts about Glass Recycling, Glass recycling facts you should know. Sustainable Businesses, Sustainability, 12.
  • Lenort, R., Staš, D., Wicher, P., Holman, D. and Ignatowicz, K. (2017), Comparative Study of Sustainable Key Performance Indicators in Metallurgical İndustry, Annual Set the Environment Protection, 19, s.36-51.
  • Liljenström, C. and Finnveden, G. (2015). Data for Separate Collection and Recycling of Dry Recyclable Materials, KTH Architecture and the Built Environment, KTH Royal Institute of Technology.
  • Maqsoom, A., Hashmi, A. A. Q., Zeeshan, M., Arshad, Q., Zeeshan, B. U. and Salahuddin, H. (2019), A System Dynamics-Based Economic Performance Simulation of construction Waste Reduction Management: Effective Application of Prefabrication, Environmental Engineerıng and Management Journal, 18(11), s.2363-2376.
  • Mclucas, A. and Ryan, M. (2012), On the Validation of System Dynamics Models, Systems Engineering / Test and Evaluation Conference SETE2012 At: Canberra.
  • Micky, A. B. (2019), A System Dynamics-Based Approach to Help Understand the Role of Food and Fiodegradable Waste Management in Respect of Municipal Waste Management Systems, Sustainability, 11(12), s.3456.
  • Mohsen, M. S. and Akash, B. A. (1998), Energy Analysis of the Steel Making Industry, International Journal of Energy Research, 22(12), s.1049-1054.
  • Nabavi, E., Daniell, K. A. and Najafi, H. (2017), Boundary Matters: the Potential of System Dynamics to Support Sustainability? J. Clean. Prod., 140, s.312-323.
  • Nidhi, M. B. and Pillai, V. M. (2019), Product disposal Penalty: Analysing Carbon Sensitive Sustainable Supply Chains, Computers and Industrial Engineering, 128, s.8-23.
  • Norgate, T. E., Jahanshahi, S. and Rankin, W. J. (2007), Assessing The Environmental Impact of Metal Production Processes, J. Clean. Prod., 15, s.838-848.
  • Olugu, E. U. and Wong, K. Y. , (2012), An Expert Fuzzy Rule-Based System for Closed-Loop Supply Chain Performance Assessment in the Automotive Industry, Expert Systems with Applications, 39(1), s.375-384.
  • Osiro, L., Lima-Junior, F. R. and Carpinetti, L. C. R. (2018), A Group Decision Model Based on Quality Function Deployment and Hesitant Fuzzy for Selecting Supply Chain Sustainability Metrics, Journal of Cleaner Production, 183, s.964-978.
  • Peng, J., Curcija, D. and Thanachareonkit, A. (2019), Study on the Overall Energy Performance of A Novel C-Si Based Semitransparent Solar Photovoltaic Window, Applied Energy 243, s.854–872.
  • Pinha, A. C. and Sagawa, J. K. (2020), A System Dynamics Modelling Approach for Municipal Solid Waste Management and Financial Analysis, Journal of Cleaner Production, 269.
  • Raadal, H. L., Brekke, A. and Mohdal, I. S. (2008). Miljøanalyse Av Ulike Behandlingsformer For Plastemballasje Fra Husholdninger. Fredrikstad, Norway: Østfoldforskning AS.
  • Rada, E. C. (2016). Solid waste management: Policy and planning for a sustainable society, Apple Academic Press, New Jersey, USA.
  • Ramos, T. R. P., Gomes, M. I. and Barbosa-Póvoac, A. (2014), Planning A Sustainable Reverse Logistics System: Balancing Costs with Environmental and Social Concerns, Omega, 48, s.60-74.
  • Rebs, T., Brandenbyrg, M. And Seuring, S. (2019), System Dynamics Modeling for Sustainable Supply Chain Management: A Literature Review and Systems Thinking Approach, Journal of Cleaner Production, 208, s.1265-1280.
  • Rinsatitnon, N., Dijaroen, W., Limpiwun, T., Suktavee, G. and Chinda, T. (2018), Reverse Logistics Implementation in the Construction Industry: Paper Waste Focus, Songklanakarin Journal of Science and Technology, 40(4), s.798.
  • Sarkis, J. and Dijkshoorn, J. (2007), Relationships between Solid Waste Management Performance and Environmental Practice Adoption in Welsh SMEs, International Journal of Production Research, 45 (21), 4989-5015, doi: 10.1080/00207540600690529.
  • Seshappa, A. and Anjaneya Prasad, B. (2021), Characterization and Investigation of Mechanical Properties of Aluminium Hybrid Nano-composites: Novel Approach of Utilizing Silicon Carbide and Waste Particles to Reduce Cost of Material, Silicon, 13, s.4355–4369, https://doi.org/10.1007/s12633-020-00748-z
  • Storm, B. K. (2017), Production of Recyclates – Compared with Virgin Plastics – A LCA Study”, MATEC Web of Conferences, 112, 04024.
  • Suttibak, S. and Nitivattananon, V. (2008). Assessment of Factors Influencing the Performance of Solid Waste Recycling Programs, Resources, Conservation and Recycling 53, s.45–56.
  • The Association of Plastic Recyclers. (2018). Life Cycle Impacts for Postconsumer Recycled Resins: Pet, HDPE, and PP. The Access Date: (24.12.2021) https://www.jdsupra.com/legalnews/life-cycle-impacts-for-postconsumer-98256/
  • The Association of Plastic Recyclers. (2020). Virgin vs. Recycled Plastic Life Cycle Assessment Energy Profile and Life Cycle Assessment Environmental Burdens, The Access Date: (11.10.2021). https://plasticsrecycling.org/images/library/APR-Recycled-vs-Virgin-May2020.pdf
  • Theyel, G. and Hofmann, K. H. (2015), Environmental Practices and innovation Performance of US Small and Medium-Sized Manufacturers, Journal of Manufacturing Technology Management, 26(3), s.333-348.
  • Tian, X., Xiao, H., Liu, Y. B. And Ding, W. R. (2021), Design and Simulation of A Secondary Resource Recycling System: A Case Study of Lead-Acid Batteries, Waste Management, 126, s.78-88.
  • Ulku, M. A., Akgun, M., Venkatadri, U., Diallo, C. and Chadha, S. S. (2020), Managing Environmental and Operational Risks for Sustainable Cotton Production Logistics: System Dynamics Modelling for A Textile Company, Logistics-Basel, 4(4).
  • Wang, J., Zhang, Y. and Goh, M. (2018), Moderating the Role of Firm Size in Sustainable Performance Improvement through Sustainable Supply Chain Management, Sustainability, 10, s.1654.
  • Wei, F., Sifeng, L., Lijun, Y., Weizhao, L. and Zhengyang, Y. (2014), Research on Performance Evaluation System for Green Supply Chain Management Based on the Context of Recycled Economy-Taking Guangxi's Manufacturing Industry As Example, Journal of Grey System, 26(2), s.177-187.
  • Weeks, J. G., Wasil, J. C. M., Llamas, K. M. and Agrinzoni, C. M. (2021), Solid Waste Management System for Small Island Developing States, Global J. Of Env. Science and Management, 7(2), s.259- 72.
  • World Steel Association. (2018), “Steel Facts”. The Access Date: 15.05.2021. https://www.worldsteel.org/en/dam/jcr:ab8be93e-1d2f-4215-9143 4eba6808bf03/20190207_steelFacts.pdf.
  • Wu, Z., Zhai, S., Hong, J., Zhang, Y., and Shi, K. (2018), Building Sustainable Supply Chains for Organizations Based on QFD: A Case Study”, Int. J. Environ. Res. Public Health, 15(12), s.2834.
  • Yellishetty, M., Mudd, G. M., Ranjith, P. G. and Tharumarajah, A. (2011), Environmental Life-Cycle Comparisons of Steel Production and Recycling: Sustainability Issues, Problems and Prospects, Journal of Environmental Science and Policy, 14, s.650–663.
  • Yu, H. and Solvang, W. D. (2018), Incorporating Flexible Capacity in the Planning of a Multi-Product Multi-Echelon Sustainable Reverse Logistics Network under Uncertainty, Journal of Cleaner Production, 198, s.285-303.
  • Yuan, H. and Wang, J. (2014). A System Dynamics Model for Determining the Waste Disposal Charging Fee in Construction, Eur. J. Oper. Res. 237, s.988–996.
  • Zarrinpoor, N. (2021), Designing A Sustainable Supply Chain Network for Producing High-Value Products from Waste Glass, Waste Management and Research, 39(12), s.1489-1500.
  • Zacho, K. O. and Mosgaard, M. A. (2016), Understanding the Role of Waste Prevention in Local Waste Management: A Literature Review, ISWA, https://doi.org/10.1177/0734242X16652958.
  • Zhou, C., Yang, G., Ma, S. J., Liu, Y. J. and Zhao, Z. L. (2021), The Impact of the COVID-19 Pandemic on Waste-to-Energy and Waste-to-Material Industry in China, Renewable and Sustainable Energy Reviews, s.139.

Endüstriyel Katı Atık Geri Dönüşümünün Sürdürülebilir Tedarik Zinciri Performansı Üzerindeki Etkilerinin Analizi için Bir Sistem Dinamiği Çerçevesi

Yıl 2023, Cilt: 23 Sayı: 2, 868 - 891, 31.07.2023
https://doi.org/10.11616/asbi.1218373

Öz

Bu çalışmada, endüstriyel katı atıkların geri dönüştürülmesinin sürdürülebilir tedarik zinciri performansı üzerindeki etkilerini ortaya çıkaracak bir performans ölçüm modeli önerilmesi amaçlanmaktadır. Ayrıca önerilen modeli kullanarak plastik, cam, çelik ve alüminyum geri dönüşümünün ekonomik ve çevresel sürdürülebilirlik performansı üzerindeki etkilerinin değerlendirilmesi de amaçlanmaktadır. Bu modelin kapsamı ve farklı endüstriyel atıkların geri dönüşüm sonuçlarının aynı göstergelerle belirlenmesinin literatüre katkı sağlayacağı beklenmektedir. Modelin iki yıllık dönem için çalıştırılmasından sonra geri dönüştürülmüş plastiklerin sürdürülebilirlik performansına katkısı %39, camların %31, çeliklerin %44 ve alüminyumların %47'ye ulaşacağı görülmüştür. Enerji tüketimi açısından geri dönüşümün en büyük katkı oranı alüminyumlardadır. Maliyet ve fırsat maliyetini dahil eden karlılık kriterleri açısından ise en yüksek katkı oranı çeliklerdedir.

Kaynakça

  • Agarwal, A. F., Giraud-Carrie. and Li, Y. (2018), A Mediation Model of Green Supply Chain Management Adoption: The Role of Internal Impetus, International Journal of Production Economics, 205, s.342–358.
  • Alamerew, Y. A. and Brissaud, D. (2020), Modelling Reverse Supply Chain Through System Dynamics for Realizing the Transition Towards the Circular Economy: A Case Study on Electric Vehicle Batteries, Journal of Cleaner Production, 254.
  • Ali, S.S., Paksoy, T., Torğul, B. and Kaur, R. (2020), Reverse Logistics Optimization of An İndustrial Air Conditioner Manufacturing Company for Designing Sustainable Supply Chain: A Fuzzy Hybrid Multi-Criteria Decision-Making Approach, Wireless Networks, 26, s.5759–5782.
  • Angelis-Dimakis, A., Arampatzis, G. and Assimacopoulos, D. (2016), Systemic Eco-Efficiency Assessment of Meso-Level Water Use Systems, Journal of Cleaner Production, 138 (2), s.195-207.
  • Avsec, S. and Kaucic, B. (2018), Eco-Efficient Decision Support Model of Solid Waste Recycling, Environmental Engineering and Management Journal, 17(5), s.1149-1159
  • Beiler, B. C., Ignácio, P. S. A., Júnior, A. C. P., Anholon, R. and Rampasso, I. S. (2020), Reverse Logistics System Analysis of A Brazilian Beverage Company: An Exploratory Study, Journal of Cleaner Production, 274, s.20.
  • Benavides, P. T., Dunn, J. B., Han, J., Biddy, M. and Markham, J. (2018), Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived Pet Bottles, ACS Sustainable Chem. Eng. 6, s.9725−9733.
  • Benner, J. H. B., Otten, M., Wielders, L. M. L. and Vroonhof, J. T. W. (2007), CO2-kentallen Afvalscheiding, CE Delft, Delft.
  • British Glass Recycling. (2003), Glass Recycling - Life Cycle Carbon Dioxide Emissions. The Access Date: 05.06.2021: http://www.packagingfedn.co.uk/images/reports/Enviros_Report.pdf.
  • Cevik Aka, D. (2022), Endüstriyel Katı Atık Geri Dönüşümünün Çevresel ve Ekonomik Performansa Etkisini Belirlemeye Yönelik Bir Sistem Dinamiği Modeli Önerisi, Doktora Tezi, Sakarya Üniversitesi, İşletme Enstitüsü, Sakarya, Tez No: 764629.
  • Chaudhary, K. and Vrat, P. (2020), Circular Economy Model of Gold Recovery from Cell Phones Using System Dynamics Approach: A Case Study of India, Environment, Development and Sustainability, 22, s.173–200.
  • Chaves, G. D. D., Siman, R. R. and Chang, N. B. (2021), Policy Analysis for Sustainable Refuse-Derived Fuel Production in Espirito Santo Brazil, Journal of Cleaner Production, 294.
  • Chen, Y-C. and Liu, H-M. (2021), Evaluation of Greenhouse Gas Emissions and The Feed-in System of Waste-To-Energy Facilities Using A System Dynamics Model, Science of the Total Environment, 792.
  • Cucchiella, F., D’Adamo, I., Gastaldi, M. and Lenny Koh, S. C. (2014), Implementation of A Real Option in A Sustainable Supply Chain: An Empirical Study of Alkaline Battery Recycling, International Journal of Systems Science, 45(6), s.1268-1282.
  • Dahlström, K. and Ekins, P. (2007), Combining Economic and Environmental Dimensions: Value Chain Analysis of UK Aluminium Flows, Resources Conservation and Recycling, 51(3), s.560.
  • Das, D. (2018), The Impact of Sustainable Supply Chain Management Practices on Firm Performance: Lessons From Indian Organizations, Journal of Cleaner Production, 203, s.179-196.
  • Das, D. and Dutta, P. (2013), A System Dynamics Framework for İntegrated Reverse Supply Chain With Three Way Recovery and Product Exchange Policy, Computers and Industrial Engineering, 66(4), s.720-733.
  • Ding, Z., Yi, G., Tam, V. W. Y. and Huang, T. (2016), A System Dynamics-Based Environmental Performance Simulation of Construction Waste Reduction Management in China, Waste Manag, 51, s.130-141.
  • Döngüsel Ekonomi ve Atık Yönetimi Dairesi Başkanlığı. (2022), Sanayi Atıklarının Yönetimi” Yayınlanmamış Raporu, Çevre Yönetimi Genel Müdürlüğü.
  • Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos T., Luo, Z. and Roubaud, D. (2020), Upstream Supply Chain Visibility and Complexity Effect on Focal Company’s Sustainable Performance: Indian Manufacturers’ Perspective, Annals of Opr. Res., 290, s.343-67.
  • European Commission. (2008). Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, The Access Date: 07.09.2021: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098andfrom=EN.
  • Farel, R., Yannou, B., Ghaffari, A. and Leroy. Y. (2013), A Cost and Benefit Analysis of Future End-of-Life Vehicle Glazing Recycling in France: A Systematic Approach. Resources, Conservation and Recycling, 74, s.54-65.
  • Farrokh, M., Azar, A., Jandaghi, G. and Ahmadi, E. (2018), A Novel Robust Fuzzy Stochastic Programming for Closed Loop Supply Chain Network Design Under Hybrid Uncertainty, Fuzzy Sets and Systems, 341, s.69-91.
  • Feitó-Cespón, M., Sarache, W., Piedra-Jimenez, F. and Cespón-Castroc, R. (2017), Redesign of A Sustainable Reverse Supply Chain Under Uncertainty: A Case Study, Journal of Cleaner Production, 151, s.206-217.
  • Forrester J. W. (1961). Industrial Dynamics. Portland: Productivity Press.
  • Forrester, J. W. (1994), System Dynamics, Systems Thinking, and Soft OR, Syst. Dynam. Rev. 10 (2–3), s.245–256.
  • Giannis, A., Chen, M., Yin, K., Tong, H. and Veksha, A. (2017), Application of System Dynamics Modeling for Evaluation of Different Recycling Scenarios in Singapore, Journal of Material Cycles and Waste Management, 19, s.1177–1185.
  • Global Aluminium Cycle (2017), Methodology - Resources, Conservation and Recycling, 125, s.48-69. Govindan, K., Jha, P. C., Agarwal, V. and Darbari, J. D. (2019), Environmental Management Partner Selection for Reverse Supply Chain Collaboration: A Sustainable Approach, Journal of Environmental Management, 236, s.784-797.
  • Gradus, R. H. J. M., Nillesen, P. H. L., Dijkgraaf, E. and Koppen, R. J. (2017), A Cost-Effectiveness Analysis for Incineration or Recycling of Dutch Household Plastic Waste, Ecological Economics, 135, s.22-28.
  • Gu, F., Hall, P., Guo, J-F. and Summers, P. A. (2017), From Waste Plastics to Industrial Raw Materials: A Life Cycle Assessment of Mechanical Plastic Recycling Practice Based on A Real-World Case Study, Sci. Total Environ., 601-602, s.1192-1207.
  • Haghighi, S. M., Torabi, S. A. and Ghasemi, R. (2016), An Integrated Approach for Performance Evaluation in Sustainable Supply Chain Networks (with A Case Study), Journal of Cleaner Production, 137, s.579-597.
  • Haryani, T. and Subriadi, A. P. (2021), E-Commerce Acceptance in the Dimension of Sustainability, Journal of Modelling in Management, 17(2).
  • Hilmann, K., Damgaard, A., Eriksson, O., Jonsson, D. and Fluck, L. (2015). Climate Benefits of Material Recycling Inventory of Average Greenhouse Gas Emissions for Denmark, Norway and Sweden. Norden, ISBN 978-92-893-4218-6.
  • Jafari, H. R., Seifbarghy, M. and Omidvari, M. (2017), Sustainable Supply Chain Design with Water Environmental Impacts and Justice-Oriented Employment Considerations: A Case Study in Textile İndustry, Scientia Iranica. Transaction E, Industrial Engineering, Tehran 24(4), s.2119-2137.
  • Khazhiakhmetova, R., Kashuba, I., Vlasova, S., Kapustin, F. and Hela, R. (2020), The Transparent Discolored Glass for Industrial and High-Speed Transport, MATEC Web of Conferences, 329.
  • Khoo, H. H. (2019), LCA of Plastic Waste Recovery into Recycled Materials, Energy and Fuels in Singapore, Resources, Conservation and Recycling, 145, s.67-77.
  • Kovacic, M., Stopar, K., Vertnik, R. and Šarler, B. (2019), Comprehensive Electric Arc Furnace Electric Energy Consumption Modeling: A Pilot Study, Energies, 12(11), s.2142.
  • Kumar, R. and Kumar, V. (2014), Barriers in Implementation of Lean Manufacturing System in Indian Industry: A Survey, International Journal of Latest Trends in Engineering, 4(2), s.243-251.
  • Kumar, S., Smith, S.R., Fowler, G., Velis, C., Kumar, S.J., Arya, S., R., Kumar, R. and Cheeseman, C. (2017), Challenges and Opportunities Associated with Waste Management in India, R. Soc. Open Sci. 4, 160764.
  • Lagarda‑Leyva, E. A., Morales‑Mendoza, L. F., Ríos‑Vázquez, N. J., Ayala‑Espinoza, A. and Nieblas‑Armenta, C. K. (2019), Managing Plastic Waste From Agriculture Through Reverse Logistics and Dynamic Modeling, Clean Technologies and Environmental Policy, 21, s.1415–1432.
  • Landi, D., Germani, M. and Marconi, M. (2019), Analyzing the Environmental Sustainability of Glass Bottles Reuse in An Italian Wine Consortium, Procedia CIRP 80, s.399-404.
  • Larsen, A. W., Merrild, H. and Christensen, T. H. (2009), Recycling of Glass: Accounting of Greenhouse Gases and Global Warming Contributions. ISWA. https://doi.org/10.1177/0734242X09342148.
  • Leblanc, R. (2019), Quick Facts about Glass Recycling, Glass recycling facts you should know. Sustainable Businesses, Sustainability, 12.
  • Lenort, R., Staš, D., Wicher, P., Holman, D. and Ignatowicz, K. (2017), Comparative Study of Sustainable Key Performance Indicators in Metallurgical İndustry, Annual Set the Environment Protection, 19, s.36-51.
  • Liljenström, C. and Finnveden, G. (2015). Data for Separate Collection and Recycling of Dry Recyclable Materials, KTH Architecture and the Built Environment, KTH Royal Institute of Technology.
  • Maqsoom, A., Hashmi, A. A. Q., Zeeshan, M., Arshad, Q., Zeeshan, B. U. and Salahuddin, H. (2019), A System Dynamics-Based Economic Performance Simulation of construction Waste Reduction Management: Effective Application of Prefabrication, Environmental Engineerıng and Management Journal, 18(11), s.2363-2376.
  • Mclucas, A. and Ryan, M. (2012), On the Validation of System Dynamics Models, Systems Engineering / Test and Evaluation Conference SETE2012 At: Canberra.
  • Micky, A. B. (2019), A System Dynamics-Based Approach to Help Understand the Role of Food and Fiodegradable Waste Management in Respect of Municipal Waste Management Systems, Sustainability, 11(12), s.3456.
  • Mohsen, M. S. and Akash, B. A. (1998), Energy Analysis of the Steel Making Industry, International Journal of Energy Research, 22(12), s.1049-1054.
  • Nabavi, E., Daniell, K. A. and Najafi, H. (2017), Boundary Matters: the Potential of System Dynamics to Support Sustainability? J. Clean. Prod., 140, s.312-323.
  • Nidhi, M. B. and Pillai, V. M. (2019), Product disposal Penalty: Analysing Carbon Sensitive Sustainable Supply Chains, Computers and Industrial Engineering, 128, s.8-23.
  • Norgate, T. E., Jahanshahi, S. and Rankin, W. J. (2007), Assessing The Environmental Impact of Metal Production Processes, J. Clean. Prod., 15, s.838-848.
  • Olugu, E. U. and Wong, K. Y. , (2012), An Expert Fuzzy Rule-Based System for Closed-Loop Supply Chain Performance Assessment in the Automotive Industry, Expert Systems with Applications, 39(1), s.375-384.
  • Osiro, L., Lima-Junior, F. R. and Carpinetti, L. C. R. (2018), A Group Decision Model Based on Quality Function Deployment and Hesitant Fuzzy for Selecting Supply Chain Sustainability Metrics, Journal of Cleaner Production, 183, s.964-978.
  • Peng, J., Curcija, D. and Thanachareonkit, A. (2019), Study on the Overall Energy Performance of A Novel C-Si Based Semitransparent Solar Photovoltaic Window, Applied Energy 243, s.854–872.
  • Pinha, A. C. and Sagawa, J. K. (2020), A System Dynamics Modelling Approach for Municipal Solid Waste Management and Financial Analysis, Journal of Cleaner Production, 269.
  • Raadal, H. L., Brekke, A. and Mohdal, I. S. (2008). Miljøanalyse Av Ulike Behandlingsformer For Plastemballasje Fra Husholdninger. Fredrikstad, Norway: Østfoldforskning AS.
  • Rada, E. C. (2016). Solid waste management: Policy and planning for a sustainable society, Apple Academic Press, New Jersey, USA.
  • Ramos, T. R. P., Gomes, M. I. and Barbosa-Póvoac, A. (2014), Planning A Sustainable Reverse Logistics System: Balancing Costs with Environmental and Social Concerns, Omega, 48, s.60-74.
  • Rebs, T., Brandenbyrg, M. And Seuring, S. (2019), System Dynamics Modeling for Sustainable Supply Chain Management: A Literature Review and Systems Thinking Approach, Journal of Cleaner Production, 208, s.1265-1280.
  • Rinsatitnon, N., Dijaroen, W., Limpiwun, T., Suktavee, G. and Chinda, T. (2018), Reverse Logistics Implementation in the Construction Industry: Paper Waste Focus, Songklanakarin Journal of Science and Technology, 40(4), s.798.
  • Sarkis, J. and Dijkshoorn, J. (2007), Relationships between Solid Waste Management Performance and Environmental Practice Adoption in Welsh SMEs, International Journal of Production Research, 45 (21), 4989-5015, doi: 10.1080/00207540600690529.
  • Seshappa, A. and Anjaneya Prasad, B. (2021), Characterization and Investigation of Mechanical Properties of Aluminium Hybrid Nano-composites: Novel Approach of Utilizing Silicon Carbide and Waste Particles to Reduce Cost of Material, Silicon, 13, s.4355–4369, https://doi.org/10.1007/s12633-020-00748-z
  • Storm, B. K. (2017), Production of Recyclates – Compared with Virgin Plastics – A LCA Study”, MATEC Web of Conferences, 112, 04024.
  • Suttibak, S. and Nitivattananon, V. (2008). Assessment of Factors Influencing the Performance of Solid Waste Recycling Programs, Resources, Conservation and Recycling 53, s.45–56.
  • The Association of Plastic Recyclers. (2018). Life Cycle Impacts for Postconsumer Recycled Resins: Pet, HDPE, and PP. The Access Date: (24.12.2021) https://www.jdsupra.com/legalnews/life-cycle-impacts-for-postconsumer-98256/
  • The Association of Plastic Recyclers. (2020). Virgin vs. Recycled Plastic Life Cycle Assessment Energy Profile and Life Cycle Assessment Environmental Burdens, The Access Date: (11.10.2021). https://plasticsrecycling.org/images/library/APR-Recycled-vs-Virgin-May2020.pdf
  • Theyel, G. and Hofmann, K. H. (2015), Environmental Practices and innovation Performance of US Small and Medium-Sized Manufacturers, Journal of Manufacturing Technology Management, 26(3), s.333-348.
  • Tian, X., Xiao, H., Liu, Y. B. And Ding, W. R. (2021), Design and Simulation of A Secondary Resource Recycling System: A Case Study of Lead-Acid Batteries, Waste Management, 126, s.78-88.
  • Ulku, M. A., Akgun, M., Venkatadri, U., Diallo, C. and Chadha, S. S. (2020), Managing Environmental and Operational Risks for Sustainable Cotton Production Logistics: System Dynamics Modelling for A Textile Company, Logistics-Basel, 4(4).
  • Wang, J., Zhang, Y. and Goh, M. (2018), Moderating the Role of Firm Size in Sustainable Performance Improvement through Sustainable Supply Chain Management, Sustainability, 10, s.1654.
  • Wei, F., Sifeng, L., Lijun, Y., Weizhao, L. and Zhengyang, Y. (2014), Research on Performance Evaluation System for Green Supply Chain Management Based on the Context of Recycled Economy-Taking Guangxi's Manufacturing Industry As Example, Journal of Grey System, 26(2), s.177-187.
  • Weeks, J. G., Wasil, J. C. M., Llamas, K. M. and Agrinzoni, C. M. (2021), Solid Waste Management System for Small Island Developing States, Global J. Of Env. Science and Management, 7(2), s.259- 72.
  • World Steel Association. (2018), “Steel Facts”. The Access Date: 15.05.2021. https://www.worldsteel.org/en/dam/jcr:ab8be93e-1d2f-4215-9143 4eba6808bf03/20190207_steelFacts.pdf.
  • Wu, Z., Zhai, S., Hong, J., Zhang, Y., and Shi, K. (2018), Building Sustainable Supply Chains for Organizations Based on QFD: A Case Study”, Int. J. Environ. Res. Public Health, 15(12), s.2834.
  • Yellishetty, M., Mudd, G. M., Ranjith, P. G. and Tharumarajah, A. (2011), Environmental Life-Cycle Comparisons of Steel Production and Recycling: Sustainability Issues, Problems and Prospects, Journal of Environmental Science and Policy, 14, s.650–663.
  • Yu, H. and Solvang, W. D. (2018), Incorporating Flexible Capacity in the Planning of a Multi-Product Multi-Echelon Sustainable Reverse Logistics Network under Uncertainty, Journal of Cleaner Production, 198, s.285-303.
  • Yuan, H. and Wang, J. (2014). A System Dynamics Model for Determining the Waste Disposal Charging Fee in Construction, Eur. J. Oper. Res. 237, s.988–996.
  • Zarrinpoor, N. (2021), Designing A Sustainable Supply Chain Network for Producing High-Value Products from Waste Glass, Waste Management and Research, 39(12), s.1489-1500.
  • Zacho, K. O. and Mosgaard, M. A. (2016), Understanding the Role of Waste Prevention in Local Waste Management: A Literature Review, ISWA, https://doi.org/10.1177/0734242X16652958.
  • Zhou, C., Yang, G., Ma, S. J., Liu, Y. J. and Zhao, Z. L. (2021), The Impact of the COVID-19 Pandemic on Waste-to-Energy and Waste-to-Material Industry in China, Renewable and Sustainable Energy Reviews, s.139.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Damla Çevik Aka 0000-0001-9622-273X

Samet Güner 0000-0002-4095-3370

Erken Görünüm Tarihi 31 Temmuz 2023
Yayımlanma Tarihi 31 Temmuz 2023
Gönderilme Tarihi 13 Aralık 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 2

Kaynak Göster

APA Çevik Aka, D., & Güner, S. (2023). A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance. Abant Sosyal Bilimler Dergisi, 23(2), 868-891. https://doi.org/10.11616/asbi.1218373
AMA Çevik Aka D, Güner S. A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance. ASBİ. Temmuz 2023;23(2):868-891. doi:10.11616/asbi.1218373
Chicago Çevik Aka, Damla, ve Samet Güner. “A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance”. Abant Sosyal Bilimler Dergisi 23, sy. 2 (Temmuz 2023): 868-91. https://doi.org/10.11616/asbi.1218373.
EndNote Çevik Aka D, Güner S (01 Temmuz 2023) A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance. Abant Sosyal Bilimler Dergisi 23 2 868–891.
IEEE D. Çevik Aka ve S. Güner, “A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance”, ASBİ, c. 23, sy. 2, ss. 868–891, 2023, doi: 10.11616/asbi.1218373.
ISNAD Çevik Aka, Damla - Güner, Samet. “A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance”. Abant Sosyal Bilimler Dergisi 23/2 (Temmuz 2023), 868-891. https://doi.org/10.11616/asbi.1218373.
JAMA Çevik Aka D, Güner S. A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance. ASBİ. 2023;23:868–891.
MLA Çevik Aka, Damla ve Samet Güner. “A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance”. Abant Sosyal Bilimler Dergisi, c. 23, sy. 2, 2023, ss. 868-91, doi:10.11616/asbi.1218373.
Vancouver Çevik Aka D, Güner S. A System Dynamics Framework for Analyzing The Impacts of Industrial Solid Waste Recycling on Sustainable Supply Chain Performance. ASBİ. 2023;23(2):868-91.