Araştırma Makalesi
BibTex RIS Kaynak Göster

The Evaluation of Flood/Flash Flood and Morphometric Analysis of Main and Sub-basins of Turkey via SRTM 90M DEM

Yıl 2024, Cilt: 29 Sayı: 51, 13 - 40, 30.06.2024
https://doi.org/10.17295/ataunidcd.1461010

Öz

The spatial impact of short-term geomorphological events such as floods and flash floods varies depending on the size of the basin. The morphometry provides important clues about the susceptibility of a basin, particularly to dynamic processes such as rivers and slopes, by numerically expressing the dimensional aspects of the basin. This study aims, to a certain extent, to determine the morphometric distribution of basins in Turkey and evaluate the contribution of morphometry associated with events such as floods and flash floods to these occurrences in the literature. For this purpose, the morphometric analyses were conducted on a total of 26 basins, including the primary level sub-basins of Turkey's 14 main basins and closed basins, using SRTM 90m DEM. These analyses encompass linear morphometry, areal morphometry, and relief morphometry elements. The findings obtained in this study have been addressed at both the main basin and primary sub-basin levels. Unique features among the basins have been identified through morphometry, and the results obtained have been associated with topographic, geomorphological, and geological elements. Additionally, the relationship between morphometry and the number of flood and flash flood events occurring in Turkey basins has been investigated. The flood and flash flood inundation frequency at both main and sub-basin levels have been compared with morphometric values in terms of significance.

Kaynakça

  • Ahmed, A., Hewa, G., & Alrajhi, A. (2021). Flood susceptibility mapping using a geomorphometric approach in South Australian basins. Natural Hazards, 106(1), 629-653. https://doi.org/10.1007/s11069-020-04481-z
  • Al-Saady, Y. I., Al-Suhail, Q. A., Al-Tawash, B. S., & Othman, A. A. (2016). Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environmental Earth Sciences, 75, 1-23.https://doi.org/10.1007/s12665-016-6038-y
  • Aldrees, A., Mohammed, A., Dan‚ Äôazumi, S., & Abba, S. I. (2024). Frequency-based flood risk assessment and mapping of a densely populated Kano city in sub-saharan africa using move framework. Water, 16(7), 1013. https://doi.org/10.3390/w16071013
  • Ali, S. A., & Khan, N. (2013). Evaluation of morphometric parameters-a remote sensing and GIS based approach. Open Journal of Modern Hydrology, 3 (1), 8. http://dx.doi.org/10.4236/ojmh.2013.31004
  • Arpat, E., & Şaroğlu, F. (1975). Türkiye’deki bazı önemli genç tektonik olaylar. Türkiye Jeoloji Kurumu Bülteni, 18(1), 91-101.
  • Atalay, İ. (2010). Uygulamalı klimatoloji. Meta Basım Matbaacılık Hizmetleri.
  • Avcı, V., & Ünsal, Ö. (2023). A morphometric approach to bozkurt (Kastamonu-Türkiye) flood. Doğal Afetler ve Çevre Dergisi, 9(2), 216-239. https://doi.org/10.21324/dacd.1210797
  • Avcı, V., & Sunkar, M. (2015). Giresun'da sel ve taşkın oluşumuna neden olan aksu çayı ve batlama deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30, 91-119.
  • Avcı, V., & Sunkar, M. (2018). Bulancak’ta (Giresun) sel ve taşkın olaylarına neden olan Pazarsuyu, İncüvez, Kara ve Bulancak derelerinin morfometrik analizleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 28(2), 15-41. https://doi.org/10.18069/firatsbed.460907
  • Banerjee, A., Singh, P., & Pratap, K. (2015). Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach. Applied Water Science, 7, 1807-1815. https://doi.org/10.1007/s13201-015-0354-3
  • Beg, A. A. F. (2015). Morphometric toolbox: a new technique in basin morphometric analysis using ArcGIS. Global Journal of Earth Science and Engineering, 2(2), 21-30. https://doi.org/10.15377/2409-5710.2015.02.02.1
  • Benli, H., Bacanlı, M., Gündoğdu, Ş. T., & Yaman, M. (2018). Türkiye’de afet yönetimi ve doğa kaynaklı afet istatistikleri. Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • Bhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878-894. https://doi.org/10.1080/10106049.2013.868042
  • Bihter, E., Işık, M. S., & Serdar, E. (2020). Global ve bölgesel (yüksek çözünürlüklü) sayısal yükseklik modellerinin doğruluk analizi üzerine bir inceleme. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4), 598-612. https://doi.org/10.35414/akufemubid.746252
  • Bildirici, İ. Ö., & Abbak, R. A. (2017). Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25. https://doi.org/10.15317/Scitech.2017.66
  • Biswas, A., Das Majumdar, D., & Banerjee, S. (2014). Morphometry governs the dynamics of a drainage basin: analysis and implications. Geography Journal, 2014. https://doi.org/10.1155/2014/927176
  • Bogale, A. (2021). Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana basin, upper Blue Nile basin, Ethiopia. Applied Water Science, 11(7), 122. https://doi.org/10.1007/s13201-021-01447-9
  • Bozdoğan, M., & Canpolat, E. (2023). Drenaj havzalarındaki morfotektonik özelliklerin jeomorfik analizlerle incelenmesi: Delibekirli (Kırıkhan/Hatay) havzası örneği. Jeomorfolojik Araştırmalar Dergisi 11, 22-51. https://doi.org/10.46453/jader.1207265
  • Cai, X., McKinney, D. C., & Lasdon, L. S. (2003). Integrated hydrologic-agronomic-economic model for river basin management. Journal of Water Resources Planning and Management, 129(1), 4-17. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(4)
  • Cihangir, M. E., Görüm, T., & Nefeslioğlu, H. A. (2018). Heyelan tetikleyici faktörlerine bağlı mekânsal hassasiyet değerlendirmesi. Türk Coğrafya Dergisi, 70, 133-142. https://doi.org/10.17211/tcd.410998
  • Cihangir, M. E. (2022). Kayma tipi heyelanların farklı duyarlılık modellerinde kombinasyonu: Sakarya havzası yukarı çığırı örneği. Türk Coğrafya Dergisi, 80, 21-38. https://doi.org/10.17211/tcd.1065523
  • Chandrashekar, H., Lokesh, K., Sameena, M., & Ranganna, G. (2015). GIS-based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4, 1345-1353. https://doi.org/10.1016/j.aqpro.2015.02.175
  • Chorley, R. J. (1957). Climate and morphometry. The Journal of Geology, 65(6), 628-638.
  • Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S., & Xiao, H. (2014). Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1(3), 413-428. https://doi.org/10.1093/nsr/nwu017
  • Chorley, R. J., & Dale, P. F. (1972). Cartographic problems in stream channel delineation. Cartography, 7(4), 150-162. https://doi.org/10.1080/00690805.1972.10437698
  • Christopher, O., Idowu, A., & Olugbenga, A. (2010). Hydrological analysis of Onitsha North East drainage basin using geoinformatic techniques. World Applied Sciences Journal, 11(10), 1297-1302.
  • Chun, Y., & Griffith, D. A. (2013). Spatial statistics and geostatistics: theory and applications for geographic information science and technology. Sage.
  • Coşkun, M., & Öztürk, A. (2021). Havza önceliklendirmesi bakımından Ermenek Çayı havzası ve Gökçay havzasının karşılaştırmalı morfometrik analizi. Türkiye Ormancılık Dergisi, 23(1), 1-10. https://doi.org/10.18182/tjf.1024569
  • Çubukçu, K. M. (2015). Planlamada ve coğrafyada temel istatistik ve mekansal istatistik. Nobel.
  • Cürebal, İ. (2004). Madra Çayı havzasının hidrografik özelliklerine sayısal yaklaşım. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(11), 11-24.
  • Das, M. M., & Saikia, M. D. (2012). Watershed management. PHI Learning Pvt. Ltd.
  • Delipınar, Ş. (2017). Havza yönetiminde kurumsal yapı: Türkiye için bir öneri [Yayınlanmamış Doktora Tezi, Gebze Teknik Üniversitesi]. Gebze.
  • Demoulin, A. (2011). Basin and river profile morphometry: a new index with a high potential for relative dating of tectonic uplift. Geomorphology, 126(1-2), 97-107. https://doi.org/10.1016/j.geomorph.2010.10.033
  • Dewey, J., Hempton, M., Kidd, W., Saroglu, F., & Şengör, A. (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia-a young collision zone. Geological Society, London, Special Publications, 19(1), 1-36. https://doi.org/10.1144/GSL.SP.1986.019.01.01
  • Dursun, İ., & Babalık, A. A. (2023). Burdur Gölü havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Türkiye Ormancılık Dergisi, 24(1), 25-38. https://doi.org/10.18182/tjf.1205157
  • Downs, P.W., Gregory, K.J. & Brookes, A. (1991). How integrated is river basin management?. Environmental Management, 15, 299-309. https://doi.org/10.1007/BF02393876
  • Efe, M., & Aydın, B. S. (2009). İdari sınırlara dayalı planlamanın değiştirilebilirliği ve havza temelli il sınırları önerisi. Ege Coğrafya Dergisi, 18(1-2), 73-84.
  • Elebaşı, E., & Özdemir, H. (2018). Marmara denizi akarsu havzalarının morfometrik analizi. Coğrafya Dergisi, 36, 63-84. http://dx.doi.org/10.26650/JGEOG418790
  • Elibüyük, M., & Yılmaz, E. (2010). Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafi Bilimler Dergisi, 8(1), 27-56.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Active fault map of Turkey with an explanatory text 1: 1,250,000 scale. General Directorate of Mineral Research and Exploration, special publication series, 30, 89.
  • Erdede, B., & Öztürk, D. (2016). Kızılırmak havzasının taşkın potansiyelinin çizgisel, alansal ve rölyef morfometrik indisler kullanılarak değerlendirilmesi. 6. Uzaktan Algilama-CBS Sempozyumu (UZAL-CBS 2016), Adana.
  • Erginal, A., Öztürk, B., & Cürebal, İ. (2002). Kepez Deresi havzasının jeomorfolojik özelliklerinin morfometrik açıdan incelenmesi. Türk Coğrafya Dergisi, 39, 23-43.
  • Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Woldearegay, K. (2017). Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia. Applied Water Science, 7, 3825-3840. https://doi.org/10.1007/s13201-017-0534-4
  • Finsterwalder, S. (1890). Über den mittleren Böschungswinkel und das wahre Areal einer topographischen Fläche. Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften München, 20(1).
  • Gardiner, V. (1975). Drainage Basin Morphometry. Technical Bulletin of the British Geomorphological Research Group, no. 14. Geo Abstract Ltd.
  • Garipağaoğlu, N., & Uzun, M. (2019). İznik Gölü havzasi’nda doğal ortam koşullari, değişimler ve muhtemel risklerin havza yönetimi ve planlamasına etkisi. Eastern Geographical Review, 24(2), 1-24. https://doi.org/10.17295/ataunidcd.621776
  • Gebre, T., Kibru, T., Tesfaye, S., & Taye, G. (2015). Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, 7(02), 177. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=55674&#abstract
  • Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Harşit River basin. Journal of Hydrology, 603, 127061. https://doi.org/10.1016/j.jhydrol.2021.127061
  • Görgülü, E., & Göl, C. (2021). Coğrafi Bilgi Sistemleri ile Havza Morfometrik Analizi: Sarayköy Göleti Havzası (Çankırı). Anadolu Orman Araştırmaları Dergisi, 7(2), 107-118. https://doi.org/10.53516/ajfr.960176
  • Gravelius, H. (1914). Grundriß der gesamten Gewässerkunde: in vier Bänden. 1. Flußkunde. Göschen.
  • Güney, Y. (2018). Çalıdere havzası'nın (Armutlu yarımadası, Yalova) morfotektoniğinin jeomorfometrik analizlerle değerlendirilmesi. Coğrafi Bilimler Dergisi, 16(2), 259-271. https://doi.org/10.1501/Cogbil_0000000201
  • Giakoumis, T., & Voulvoulis, N. (2018). The transition of eu water policy towards the water framework directive’s integrated river basin management paradigm. Environmental management, 62(5), 819-831.https://doi.org/10.1007/s00267-018-1080-z
  • Hajam, R. A., Hamid, A., & Bhat, S. (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology-a case study of Vishav Drainage Basin. Hydrology Current Research, 4(3), 1-12. https://doi.org/10.4172/2157-7587.1000157
  • Heathcote, I. W. (2009). Integrated watershed management: principles and practice. John Wiley & Sons.
  • Hengl, T., & Reuter, H. I. (2008). Geomorphometry: concepts, software, applications. Newnes.
  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350-361.
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370.
  • Hurtrez, J. E., Sol, C., & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small‐scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(9), 799-808. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9%3C799::AID-ESP12%3E3.0.CO;2-4
  • İmamoğlu, A. (2020). Alaca Çayı Havzası erozyon durumunun morfometrik ölçümler ile ilişkisi. Avrupa Bilim ve Teknoloji Dergisi, 18, 868-878. https://doi.org/10.31590/ejosat.710987
  • Ioris, A. A. R. (2012). The political geography of environmental regulation: implementing the water framework directive in the Douro River Basin, Portugal. Scottish Geographical Journal, 128(1), 1-23. https://doi.org/10.1080/14702541.2012.676667
  • Jain, A., Tiwari, A., & Sood, A. (2015). Morphometric analysis of drainage basin through gis: a case study of Sukhna Lake Watershed in Lower Shiwalik, India. International Journal of Scientific & Engineering Research, 6(2), 1015-1023.
  • Jaspers, F. G. (2003). Institutional arrangements for integrated river basin management. Water Policy, 5(1), 77-90. https://doi.org/10.2166/wp.2003.0004
  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Esri Redlands.
  • Junier, S., & Mostert, E. (2011). Insufficient integration between sectors hinders reaching WFD objectives in the Netherlands. 25th ICID European Regional Conference, Integrated Water Management for Multiple Land Use in Flat Coastal Areas, Groningen, The Netherlands, 16-20 May 2011. Paper IV-10.,
  • Karabulut, M., Küçükönder, M., & Topuz, M. (2013). Alata (Erdemli) Deresi'nin jeomorfometrik analizi, Coğrafyacılar Derneği Yıllık Kongresi Bildiriler Kitabı, 450-459.
  • Karabulut, M. S., & Özdemir, H. (2019). Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18), 574. https://doi.org/10.1007/s12665-019-8585-5
  • Karadağ, A. A. (2007). Katılımcı havza yönetı̇m modelı̇nı̇n oluşturulması: Kovada Gölü örneği [Yayınlanmamış Doktora Tezi, Ankara Üniversitesi]. Ankara.
  • Karataş, A. (2007). Karasu Çayı havzası'nın hidroğrafik planlanması [Yayınlanmamış Doktora Tezi, İstanbul Üniversitesi]. İstanbul.
  • Keller, E. A., & Pinter, N. (2002). Active tectonics: earthquakes, uplift, and landscape. Prentice Hall.
  • Koçyiğit, M. B., & Akay, H. (2018). Morfometrik parametreler yardımıyla havzada muhtemel taşkın riskinin tahmin edilmesi: Akçay Havzası örneği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(4), 1321-1332. https://doi.org/10.17341/gazimmfd.416429
  • Köle, M. M. (2016). Devrez Çayı vadisinin tektonik özelliklerinin morfometrik indisler ile araştırılması. Coğrafya Dergisi, 33, 20-36.
  • Küçükönder, M. (2012). Heyelanlara ilişkili arazi değişimlerinin uzaktan algılama teknikleri ile değerlendirilmesi. [Yayımlanmamış Doktora Tezi, Çukurova Üniversitesi, Jeoloji Mühendisliği Anabilim Dalı] Adana.
  • Kürçer, A., Elmacı, H., Özdemir, E., Güven, C., Güler, T., Avcu, İ., Olgun, Ş., Avcı, H. O., Aydoğan, H., Yüce, A. A., Çetin, F. E., Ayrancı, A., Akyol, Z., A, S. Ö., Altuntaş, G., Demirörs, U., Karayazı, O., Bayrak, A., & Özalp, S. (2023). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Depremi (Mw 7,7) Saha Gözlemleri ve Değerlendirmeler (14138).
  • Kvarnäs, H. (2001). Morphometry and hydrology of the four large lakes of Sweden. AMBIO: A Journal of the Human Environment, 30(8), 467-474. https://doi.org/10.1579/0044-7447-30.8.467
  • Leopold, L. B., & Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications (Vol. 252). US Government Printing Office.
  • Lim, C. H., Wong, H. L., Elfithri, R., & Teo, F. Y. (2022). A review of stakeholder engagement in integrated river basin management. Water, 14(19), 2973. https://doi.org/10.3390/w14192973
  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environmental Earth Sciences, 64, 373-381. https://doi.org/10.1007/s12665-010-0860-
  • Marchi, L., & Dalla Fontana, G. (2005). GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environmental Geology, 48, 218-228. https://doi.org/10.1007/s00254-005-1292-4
  • McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • Melton, M. A. (1958). Correlation structure of morphometric properties of drainage systems and their controlling agents. The Journal of Geology, 66(4), 442-460. https://doi.org/10.1086/626527
  • Melton, M. A. (1965). The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. The Journal of Geology, 73(1), 1-38. https://doi.org/10.1086/627044
  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Vol. 3). The Journal of Geology, 65(1). https://doi.org/10.1086/626413
  • Mostert, E. (2003). The European Water Framework Directive and water management research. Physics and Chemistry of the Earth, Parts A/B/C, 28(12), 523-527. https://doi.org/10.1016/S1474-7065(03)00089-5
  • Mudashiru, R. B., Sabtu, N., Abustan, I., & Balogun, W. (2021). Flood hazard mapping methods: A review. Journal of Hydrology, 603, 126846. https://doi.org/10.1016/j.jhydrol.2021.126846
  • Mutar, Ş. (2023). Türkiye’de yağış rejim bölgelerindeki dönemsel değişkenliğin (1961-1990/1991-2020) faktör analizi ile belirlenmesi. [Yayınlanmamış Yüksek Lisans Tezi, Sakarya Üniversitesi].
  • Nelson, A., Reuter, H., & Gessler, P. (2009). DEM production methods and sources. Developments in soil science, 33, 65-85. https://doi.org/10.1016/S0166-2481(08)00003-2
  • Ödeker, B., & Türkoğlu, N. (2020). Sabuncular Deresi Havzası'nın (Rize/Çayeli) Morfometrik özelliklerinin coğrafi bilgi sistemleri (cbs) ile belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1), 14-38.
  • Okay, A. I. (2008). Geology of Turkey: A synopsis. Anschnitt, 21, 19-42.
  • Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.
  • Ouma, Y. O. (2016). Evaluation of multiresolution digital elevation model (DEM) from real-time kinematic GPS and ancillary data for reservoir storage capacity estimation. Hydrology, 3(2), 16. https://doi.org/10.3390/hydrology3020016
  • Özdemir, H. (2011). Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları; sistematik ve bölgesel. Türk Coğrafya Kurumu Yayınları, 457-474.
  • Ozdemir, H., & Akbas, A. (2023). Is there a consistency in basin morphometry and hydrodynamic modelling results in terms of the flood generation potential of basins? A case study from the Ulus River Basin (Türkiye). Journal of Hydrology, 625, 129926. https://doi.org/10.1016/j.jhydrol.2023.129926
  • Özdemir, H., & Bayrakdar, C. (2007). 16 Kasım 2007 Tuzla Deresi taşkının nedenleri üzerine bir araştırma (Silivri-İstanbul). Türk Coğrafya Dergisi, 49, 123-139.
  • Özdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology, 56, 1405-1415. https://doi.org/10.1007/s00254-008-1235-y
  • Özşahin, E. (2015). Hoşköy deresi havzası’nın (tekirdağ) jeomorfometrik özellikleri. The Journal of Academic Social Science Studies, 33(1), 99-120. http://dx.doi.org/10.9761/JASSS2678
  • Pakhmode, V., Kulkarni, H., & Deolankar, S. (2003). Hydrological-drainage analysis in watershed-programme planning: a case from the Deccan basalt, India. Hydrogeology Journal, 11, 595-604. https://doi.org/10.1007/s10040-003-0279-z
  • Pankaj, A., & Kumar, P. (2009). GIS-based morphometric analysis of five major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37, 157-166. https://doi.org/10.1007/s12524-009-0007-9
  • Parlak, O., Yavuzoğlu, A., Bayrak, A., Olgun, Ş. (2023). 06 Şubat 2023 Ekinözü (Kahramanmaraş) Depremi (Mw 7,6) saha gözlemleri ve ön değerlendirmeler. MTA Yerbilimleri ve Madencilik Dergisi, 3(3), 81-98.
  • Parvez, M. B., & Inayathulla, M. (2019). Morphometry, hypsometry analysis and runoff estimation of Aam Talab watershed Raichur, Karnataka. International Journal of Advance Research And Innovative Ideas In Education, 5(3), 1713-1727.
  • Pawar, D., & Raskar, A. (2011). Linear aspects of basin morphometry of Panchaganga river (Kolhapur): Western Maharashtra. International Referred Research Journal, 2(20), 95-97.
  • Peltier, L. C. (1962). Area sampling for terrain analysis. The Professional Geographer, 14(2), 24-28.
  • Pike, R. J. (1995). Geomorphometry: progress, practice and prospect. Zeitschrift fur Geomorphologie NF SupplementBand, 101, 221-238.
  • Pike, R. J. (2000). Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography, 24(1), 1-20.
  • Pike, R. J., Evans, I., & Hengl, T. (2009). Geomorphometry: A brief guide. Developments in Soil Science, 33, 3-30.
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. GSA Bulletin, 82(4), 1079-1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
  • Potter, P. E. (1957). A Quantitative geomorphic study of drainage basin characteristics in the clinch mountain area, Virginia and Tennessee. Journal of Geology, 65(1), 112-113. https://ui.adsabs.harvard.edu/link_gateway/1957JG.....65..112P/doi:10.1086/626413
  • Prabhakar, A., Singh, K., Lohani, A., & Chandniha, S. (2019). Study of Champua watershed for management of resources by using morphometric analysis and satellite imagery. Applied Water Science, 9, 1-16. https://doi.org/10.1007/s13201-019-1003-z
  • Prawiranegara, M. (2014). Spatial Multi-criteria analysis (smca) for basin-wide flood risk assessment as a tool in improving spatial planning and urban resilience policy making: a case study of Marikina River basin, Metro Manila‚ÄìPhilippines. Procedia-Social and Behavioral Sciences, 135, 18-24. https://doi.org/10.1016/j.sbspro.2014.07.319
  • Puno, G., & Puno, R. (2019). Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management, 5(3), 279-294. https://doi.org/10.22034/GJESM.2019.03.02
  • Rai, P. K., Mishra, V. N., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment, 7, 9-20. https://doi.org/10.1016/j.rsase.2017.05.001
  • Rasemann, S., Schmidt, J., Schrott, L., & Dikau, R. (2004). Geomorphometry in mountain terrain. Springer.
  • Reddy, G. P. O., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, central India-a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16. https://doi.org/10.1016/j.jag.2004.06.003
  • Resmî Gazete, 2014. Mekânsal Planlar Yapım Yönetmeliği, Mevzuat No: 19788, RS Tarihi: 14.06.2014, Sayısı: 29030.
  • Roy, S., Das, S., & Sengupta, S. (2023). Predicting terrain erosion susceptibility from drainage basin morphometry using ALOS-PALSAR DEM: Analysis from PCA-weighted AHP approach in a river system of Eastern India. Environment, Development and Sustainability, 25(9), 9589-9617. https://doi.org/10.1007/s10668-022-02450-z
  • Rosegrant, M. W., Ringler, C., McKinney, D. C., Cai, X., Keller, A., & Donoso, G. (2000). Integrated economic‐hydrologic water modeling at the basin scale: The Maipo River basin. Agricultural Economics, 24(1), 33-46. https://doi.org/10.1111/j.1574-0862.2000.tb00091.x
  • Rudraiah, M., Govindaiah, S., & Vittala, S. S. (2008). Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India. Journal of the Indian Society of Remote Sensing, 36, 351-360. https://doi.org/10.1007/s12524-008-0035-x
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America bulletin, 67(5), 597-646.
  • Segura, F. S., Pardo‐Pascual, J. E., Rosselló, V. M., Fornós, J. J., & Gelabert, B. (2007). Morphometric indices as indicators of tectonic, fluvial and karst processes in calcareous drainage basins, South Menorca Island, Spain. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(13), 1928-1946. https://doi.org/10.1002/esp.1506
  • Şen, Z. (2009). İklim değişikliği içerikli taşkın afet ve modern hesaplama yöntemleri. Su Vakfı Yayınları.
  • Şengör, A. (1980). Türkiye’nin neotektoniğinin esasları (Fundamentals of the neotectonics of Turkey). Geological Society of Turkey, Conference Series,
  • Şengör, A. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.
  • Shekar, P. R., & Mathew, A. (2022). Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system. Journal of Engineering and Applied Science, 69(1), 1-30. https://doi.org/10.1186/s44147-022-00094-4
  • Shit, P. K., Bera, B., Islam, A., Ghosh, S., & Bhunia, G. S. (2022). Introduction to drainage basin dynamics: Morphology, landscape and modelling. In P. K. Shit, B. Bera, A. Islam, S. Ghosh, & G. S. Bhunia (Eds.), Drainage Basin Dynamics: An Introduction to Morphology, Landscape and Modelling (pp. 1-9). Springer International Publishing. https://doi.org/10.1007/978-3-030-79634-1_1
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655-668.
  • Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7, 2089-2102. https://doi.org/10.1007/s13201-016-0395-2
  • Sreedevi, P., Sreekanth, P., Khan, H., & Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environmental Earth Sciences, 70, 839-848. https://doi.org/10.1007/s12665-012-2172-3
  • Sreedevi, P., Subrahmanyam, K., & Ahmed, S. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47, 412-420. https://doi.org/10.1007/s00254-004-1166-1
  • Steinke, V. A., & Sano, E. E. (2011). Semi-automatic identification, GIS-based morphometry of geomorphic features of Federal District of Brazil. Revista Brasileira de Geomorfologia, 12(1). https://doi.org/10.20502/rbg.v12i1.213
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological society of America bulletin, 63(11), 1117-1142.
  • Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. GSA Bulletin, 69(3), 279-300. https://doi.org/10.1130/0016-7606(1958)69[279:DAATFE]2.0.CO;2
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of Applied Hydrology.
  • Sukristiyanti, S., Maria, R., & Lestiana, H. (2018). Watershed-based morphometric analysis: a review. IOP conference series: earth and environmental science.
  • Sutradhar, S., & Mondal, P. (2023). Prioritization of watersheds based on morphometric assessment in relation to flood management: A case study of Ajay river basin, Eastern India. Watershed Ecology and the Environment, 5, 1-11.
  • Thomas, J., Joseph, S., Thrivikramji, K., & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21, 1077-1088. https://doi.org/10.1007/s11442-011-0901-2
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94. https://doi.org/10.2307/210739
  • Topuz, M., & Karabulut, M. (2016). Limonlu ve Alata havzalarının (Mersin-Erdemli) jeomorfometrik analizi. International Periodical for the Languages, Literature and History of Turkish or Turkic, 11/2, 1231-1250. http://dx.doi.org/10.7827/TurkishStudies.9165
  • Turoğlu, H. (1997). İyidere Havzasının hidroğrafik özelliklerine sayısal yaklaşım. Türk Coğrafya Dergisi, 32, 355-364.
  • Turoğlu, H., & Aykut, T. (2019). Ergene Nehri havzası için hidromorfometrik analizlerle taşkın duyarlılık değerlendirmesi. Jeomorfolojik Araştırmalar Dergisi, 2, 1-15.
  • Utlu, M., & Özdemir, H. (2018). Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı havzası örneği. Coğrafya Dergisi, 36, 49-62.
  • Uzun, M. (2021). İnegöl Havzasinda drenaj aği gelişimi ve flüvyal süreçlerin morfometrik analizlerle incelenmesi. Ege Coğrafya Dergisi, 30(1), 85-106. https://doi.org/10.51800/ecd.906685
  • Uzun, M., & Garipağaoğlu, N. (2020). Havza yönetiminin gelişim evreleri ve farklı modelleri. lnternational Journal of Geography and Geography Education, 43, 338-357. https://doi.org/10.32003/igge.816758
  • Vedat, A., & Sunkar, M. (2015). Giresun'da sel ve taşkın oluşumuna neden olan Aksu Çayı ve Batlama Deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30, 91-119.
  • Waikar, M., & Nilawar, A. P. (2014). Morphometric analysis of a drainage basin using geographical information system: a case study. International Journal of Multidisciplinary and Current Research, 2(2014), 179-184.
  • Yıldırım, A., & Karadoğan, S. (2011). Raman Dağları güneyinde (Dicle Vadisi) morfometrik ve morfotektonik analizler. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 16, 154-166.
  • Yılmaz, E. (2020). Türkiye’de Thornthwaite İklim İndislerindeki Eğilimler. Coğrafya Dergisi, 40, 163-185.https://doi.org/10.26650/JGEOG2019-0005
  • Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611-623. https://doi.org/10.1007/s12665-010-0551-1
  • Youssef, F. B., & Doumit, J. A. (2023). Morphometric analysis of hillslope evolution in the Kadisha River Basin based on archived aerial photographs. Geosystems and Geoenvironment, 2(1), 100132. https://doi.org/10.1016/j.geogeo.2022.100132
  • Zaidi, F. K. (2011). Drainage basin morphometry for identifying zones for artificial recharge: A case study from the Gagas River Basin, India. Journal of the Geological Society of India, 77, 160-166. https://doi.org/10.1007/s12594-011-0019-2
  • Zorer, H., & Tonbul, S. (2019). Başkale havzası’nda havza gelişiminin jeomorfometrik analizlerle incelenmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 29(2), 19-38. https://doi.org/10.18069/firatsbed.536045

Türkiye’de Ana Akarsu Havzaları Ölçeğinde Morfometrik İndislerle Sel/Taşkın Arasındaki İlişkinin Değerlendirilmesi

Yıl 2024, Cilt: 29 Sayı: 51, 13 - 40, 30.06.2024
https://doi.org/10.17295/ataunidcd.1461010

Öz

Hidrometeorolojik kaynaklı sel ve taşkın gibi kısa süreli jeomorfolojik olayların alansal etkisi, havza boyutuna bağlı değişmektedir. Morfometri havzanın boyutsal unsurlarını sayısal olarak ifade ederek, havzanın özellikle akarsu ve yamaç gibi dinamik süreçlere duyarlılığı konusunda önemli ipuçları sunmaktadır. Bu çalışma belirli düzeyde Türkiye'deki havzaların morfometrik dağılımını belirleme ve literatürde sel ve taşkın gibi olaylarla ilişkilendirilen morfometrinin, bu olaylara katkısını değerlendirme amacını taşımaktadır. Bu amaç doğrultusunda Türkiye'nin 14 ana havzası ve kapalı havzalar dahil olmak üzere 26 havzanın birincil düzeyde alt havzası için morfometrik analizleri SRTM 90 m SYM ile yapılmıştır. Analizler, çizgisel morfometri, alansal morfometri ve rölyef morfometrisini içermektedir. Çalışmada elde edilen bulgular hem ana havza hem de birincil alt havza düzeyinde ele alınmıştır. Havzalar arasındaki benzersiz özellikler morfometri ile ortaya konmuş, elde edilen sonuçlar topografik, jeomorfolojik ve jeolojik unsurlarla değerlendirilmiştir. Bunun yanı sıra Türkiye’de havza bazında gerçekleşen sel ve taşkın olay sayıları ile morfometri ilişkileri incelenmiştir. Ana ve alt havza düzeyinde sel ve taşkın frekansı, morfometrik değerler anlamlılık bakımından kıyaslanmıştır.

Kaynakça

  • Ahmed, A., Hewa, G., & Alrajhi, A. (2021). Flood susceptibility mapping using a geomorphometric approach in South Australian basins. Natural Hazards, 106(1), 629-653. https://doi.org/10.1007/s11069-020-04481-z
  • Al-Saady, Y. I., Al-Suhail, Q. A., Al-Tawash, B. S., & Othman, A. A. (2016). Drainage network extraction and morphometric analysis using remote sensing and GIS mapping techniques (Lesser Zab River Basin, Iraq and Iran). Environmental Earth Sciences, 75, 1-23.https://doi.org/10.1007/s12665-016-6038-y
  • Aldrees, A., Mohammed, A., Dan‚ Äôazumi, S., & Abba, S. I. (2024). Frequency-based flood risk assessment and mapping of a densely populated Kano city in sub-saharan africa using move framework. Water, 16(7), 1013. https://doi.org/10.3390/w16071013
  • Ali, S. A., & Khan, N. (2013). Evaluation of morphometric parameters-a remote sensing and GIS based approach. Open Journal of Modern Hydrology, 3 (1), 8. http://dx.doi.org/10.4236/ojmh.2013.31004
  • Arpat, E., & Şaroğlu, F. (1975). Türkiye’deki bazı önemli genç tektonik olaylar. Türkiye Jeoloji Kurumu Bülteni, 18(1), 91-101.
  • Atalay, İ. (2010). Uygulamalı klimatoloji. Meta Basım Matbaacılık Hizmetleri.
  • Avcı, V., & Ünsal, Ö. (2023). A morphometric approach to bozkurt (Kastamonu-Türkiye) flood. Doğal Afetler ve Çevre Dergisi, 9(2), 216-239. https://doi.org/10.21324/dacd.1210797
  • Avcı, V., & Sunkar, M. (2015). Giresun'da sel ve taşkın oluşumuna neden olan aksu çayı ve batlama deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30, 91-119.
  • Avcı, V., & Sunkar, M. (2018). Bulancak’ta (Giresun) sel ve taşkın olaylarına neden olan Pazarsuyu, İncüvez, Kara ve Bulancak derelerinin morfometrik analizleri. Fırat Üniversitesi Sosyal Bilimler Dergisi, 28(2), 15-41. https://doi.org/10.18069/firatsbed.460907
  • Banerjee, A., Singh, P., & Pratap, K. (2015). Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach. Applied Water Science, 7, 1807-1815. https://doi.org/10.1007/s13201-015-0354-3
  • Beg, A. A. F. (2015). Morphometric toolbox: a new technique in basin morphometric analysis using ArcGIS. Global Journal of Earth Science and Engineering, 2(2), 21-30. https://doi.org/10.15377/2409-5710.2015.02.02.1
  • Benli, H., Bacanlı, M., Gündoğdu, Ş. T., & Yaman, M. (2018). Türkiye’de afet yönetimi ve doğa kaynaklı afet istatistikleri. Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • Bhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878-894. https://doi.org/10.1080/10106049.2013.868042
  • Bihter, E., Işık, M. S., & Serdar, E. (2020). Global ve bölgesel (yüksek çözünürlüklü) sayısal yükseklik modellerinin doğruluk analizi üzerine bir inceleme. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(4), 598-612. https://doi.org/10.35414/akufemubid.746252
  • Bildirici, İ. Ö., & Abbak, R. A. (2017). Comparison of ASTER and SRTM digital elevation models at one-arc-second resolution over Turkey. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 5(1), 16-25. https://doi.org/10.15317/Scitech.2017.66
  • Biswas, A., Das Majumdar, D., & Banerjee, S. (2014). Morphometry governs the dynamics of a drainage basin: analysis and implications. Geography Journal, 2014. https://doi.org/10.1155/2014/927176
  • Bogale, A. (2021). Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana basin, upper Blue Nile basin, Ethiopia. Applied Water Science, 11(7), 122. https://doi.org/10.1007/s13201-021-01447-9
  • Bozdoğan, M., & Canpolat, E. (2023). Drenaj havzalarındaki morfotektonik özelliklerin jeomorfik analizlerle incelenmesi: Delibekirli (Kırıkhan/Hatay) havzası örneği. Jeomorfolojik Araştırmalar Dergisi 11, 22-51. https://doi.org/10.46453/jader.1207265
  • Cai, X., McKinney, D. C., & Lasdon, L. S. (2003). Integrated hydrologic-agronomic-economic model for river basin management. Journal of Water Resources Planning and Management, 129(1), 4-17. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:1(4)
  • Cihangir, M. E., Görüm, T., & Nefeslioğlu, H. A. (2018). Heyelan tetikleyici faktörlerine bağlı mekânsal hassasiyet değerlendirmesi. Türk Coğrafya Dergisi, 70, 133-142. https://doi.org/10.17211/tcd.410998
  • Cihangir, M. E. (2022). Kayma tipi heyelanların farklı duyarlılık modellerinde kombinasyonu: Sakarya havzası yukarı çığırı örneği. Türk Coğrafya Dergisi, 80, 21-38. https://doi.org/10.17211/tcd.1065523
  • Chandrashekar, H., Lokesh, K., Sameena, M., & Ranganna, G. (2015). GIS-based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 4, 1345-1353. https://doi.org/10.1016/j.aqpro.2015.02.175
  • Chorley, R. J. (1957). Climate and morphometry. The Journal of Geology, 65(6), 628-638.
  • Cheng, G., Li, X., Zhao, W., Xu, Z., Feng, Q., Xiao, S., & Xiao, H. (2014). Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1(3), 413-428. https://doi.org/10.1093/nsr/nwu017
  • Chorley, R. J., & Dale, P. F. (1972). Cartographic problems in stream channel delineation. Cartography, 7(4), 150-162. https://doi.org/10.1080/00690805.1972.10437698
  • Christopher, O., Idowu, A., & Olugbenga, A. (2010). Hydrological analysis of Onitsha North East drainage basin using geoinformatic techniques. World Applied Sciences Journal, 11(10), 1297-1302.
  • Chun, Y., & Griffith, D. A. (2013). Spatial statistics and geostatistics: theory and applications for geographic information science and technology. Sage.
  • Coşkun, M., & Öztürk, A. (2021). Havza önceliklendirmesi bakımından Ermenek Çayı havzası ve Gökçay havzasının karşılaştırmalı morfometrik analizi. Türkiye Ormancılık Dergisi, 23(1), 1-10. https://doi.org/10.18182/tjf.1024569
  • Çubukçu, K. M. (2015). Planlamada ve coğrafyada temel istatistik ve mekansal istatistik. Nobel.
  • Cürebal, İ. (2004). Madra Çayı havzasının hidrografik özelliklerine sayısal yaklaşım. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(11), 11-24.
  • Das, M. M., & Saikia, M. D. (2012). Watershed management. PHI Learning Pvt. Ltd.
  • Delipınar, Ş. (2017). Havza yönetiminde kurumsal yapı: Türkiye için bir öneri [Yayınlanmamış Doktora Tezi, Gebze Teknik Üniversitesi]. Gebze.
  • Demoulin, A. (2011). Basin and river profile morphometry: a new index with a high potential for relative dating of tectonic uplift. Geomorphology, 126(1-2), 97-107. https://doi.org/10.1016/j.geomorph.2010.10.033
  • Dewey, J., Hempton, M., Kidd, W., Saroglu, F., & Şengör, A. (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia-a young collision zone. Geological Society, London, Special Publications, 19(1), 1-36. https://doi.org/10.1144/GSL.SP.1986.019.01.01
  • Dursun, İ., & Babalık, A. A. (2023). Burdur Gölü havzasındaki morfometrik parametrelerin ve erozyon durumunun değerlendirilmesi. Türkiye Ormancılık Dergisi, 24(1), 25-38. https://doi.org/10.18182/tjf.1205157
  • Downs, P.W., Gregory, K.J. & Brookes, A. (1991). How integrated is river basin management?. Environmental Management, 15, 299-309. https://doi.org/10.1007/BF02393876
  • Efe, M., & Aydın, B. S. (2009). İdari sınırlara dayalı planlamanın değiştirilebilirliği ve havza temelli il sınırları önerisi. Ege Coğrafya Dergisi, 18(1-2), 73-84.
  • Elebaşı, E., & Özdemir, H. (2018). Marmara denizi akarsu havzalarının morfometrik analizi. Coğrafya Dergisi, 36, 63-84. http://dx.doi.org/10.26650/JGEOG418790
  • Elibüyük, M., & Yılmaz, E. (2010). Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları. Coğrafi Bilimler Dergisi, 8(1), 27-56.
  • Emre, Ö., Duman, T., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Active fault map of Turkey with an explanatory text 1: 1,250,000 scale. General Directorate of Mineral Research and Exploration, special publication series, 30, 89.
  • Erdede, B., & Öztürk, D. (2016). Kızılırmak havzasının taşkın potansiyelinin çizgisel, alansal ve rölyef morfometrik indisler kullanılarak değerlendirilmesi. 6. Uzaktan Algilama-CBS Sempozyumu (UZAL-CBS 2016), Adana.
  • Erginal, A., Öztürk, B., & Cürebal, İ. (2002). Kepez Deresi havzasının jeomorfolojik özelliklerinin morfometrik açıdan incelenmesi. Türk Coğrafya Dergisi, 39, 23-43.
  • Fenta, A. A., Yasuda, H., Shimizu, K., Haregeweyn, N., & Woldearegay, K. (2017). Quantitative analysis and implications of drainage morphometry of the Agula watershed in the semi-arid northern Ethiopia. Applied Water Science, 7, 3825-3840. https://doi.org/10.1007/s13201-017-0534-4
  • Finsterwalder, S. (1890). Über den mittleren Böschungswinkel und das wahre Areal einer topographischen Fläche. Sitzungsberichte der mathematisch-physikalischen Klasse der Bayerischen Akademie der Wissenschaften München, 20(1).
  • Gardiner, V. (1975). Drainage Basin Morphometry. Technical Bulletin of the British Geomorphological Research Group, no. 14. Geo Abstract Ltd.
  • Garipağaoğlu, N., & Uzun, M. (2019). İznik Gölü havzasi’nda doğal ortam koşullari, değişimler ve muhtemel risklerin havza yönetimi ve planlamasına etkisi. Eastern Geographical Review, 24(2), 1-24. https://doi.org/10.17295/ataunidcd.621776
  • Gebre, T., Kibru, T., Tesfaye, S., & Taye, G. (2015). Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, 7(02), 177. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=55674&#abstract
  • Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Harşit River basin. Journal of Hydrology, 603, 127061. https://doi.org/10.1016/j.jhydrol.2021.127061
  • Görgülü, E., & Göl, C. (2021). Coğrafi Bilgi Sistemleri ile Havza Morfometrik Analizi: Sarayköy Göleti Havzası (Çankırı). Anadolu Orman Araştırmaları Dergisi, 7(2), 107-118. https://doi.org/10.53516/ajfr.960176
  • Gravelius, H. (1914). Grundriß der gesamten Gewässerkunde: in vier Bänden. 1. Flußkunde. Göschen.
  • Güney, Y. (2018). Çalıdere havzası'nın (Armutlu yarımadası, Yalova) morfotektoniğinin jeomorfometrik analizlerle değerlendirilmesi. Coğrafi Bilimler Dergisi, 16(2), 259-271. https://doi.org/10.1501/Cogbil_0000000201
  • Giakoumis, T., & Voulvoulis, N. (2018). The transition of eu water policy towards the water framework directive’s integrated river basin management paradigm. Environmental management, 62(5), 819-831.https://doi.org/10.1007/s00267-018-1080-z
  • Hajam, R. A., Hamid, A., & Bhat, S. (2013). Application of morphometric analysis for geo-hydrological studies using geo-spatial technology-a case study of Vishav Drainage Basin. Hydrology Current Research, 4(3), 1-12. https://doi.org/10.4172/2157-7587.1000157
  • Heathcote, I. W. (2009). Integrated watershed management: principles and practice. John Wiley & Sons.
  • Hengl, T., & Reuter, H. I. (2008). Geomorphometry: concepts, software, applications. Newnes.
  • Horton, R. E. (1932). Drainage-basin characteristics. Transactions, American Geophysical Union, 13(1), 350-361.
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275-370.
  • Hurtrez, J. E., Sol, C., & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small‐scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(9), 799-808. https://doi.org/10.1002/(SICI)1096-9837(199908)24:9%3C799::AID-ESP12%3E3.0.CO;2-4
  • İmamoğlu, A. (2020). Alaca Çayı Havzası erozyon durumunun morfometrik ölçümler ile ilişkisi. Avrupa Bilim ve Teknoloji Dergisi, 18, 868-878. https://doi.org/10.31590/ejosat.710987
  • Ioris, A. A. R. (2012). The political geography of environmental regulation: implementing the water framework directive in the Douro River Basin, Portugal. Scottish Geographical Journal, 128(1), 1-23. https://doi.org/10.1080/14702541.2012.676667
  • Jain, A., Tiwari, A., & Sood, A. (2015). Morphometric analysis of drainage basin through gis: a case study of Sukhna Lake Watershed in Lower Shiwalik, India. International Journal of Scientific & Engineering Research, 6(2), 1015-1023.
  • Jaspers, F. G. (2003). Institutional arrangements for integrated river basin management. Water Policy, 5(1), 77-90. https://doi.org/10.2166/wp.2003.0004
  • Johnston, K., Ver Hoef, J. M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst (Vol. 380). Esri Redlands.
  • Junier, S., & Mostert, E. (2011). Insufficient integration between sectors hinders reaching WFD objectives in the Netherlands. 25th ICID European Regional Conference, Integrated Water Management for Multiple Land Use in Flat Coastal Areas, Groningen, The Netherlands, 16-20 May 2011. Paper IV-10.,
  • Karabulut, M., Küçükönder, M., & Topuz, M. (2013). Alata (Erdemli) Deresi'nin jeomorfometrik analizi, Coğrafyacılar Derneği Yıllık Kongresi Bildiriler Kitabı, 450-459.
  • Karabulut, M. S., & Özdemir, H. (2019). Comparison of basin morphometry analyses derived from different DEMs on two drainage basins in Turkey. Environmental Earth Sciences, 78(18), 574. https://doi.org/10.1007/s12665-019-8585-5
  • Karadağ, A. A. (2007). Katılımcı havza yönetı̇m modelı̇nı̇n oluşturulması: Kovada Gölü örneği [Yayınlanmamış Doktora Tezi, Ankara Üniversitesi]. Ankara.
  • Karataş, A. (2007). Karasu Çayı havzası'nın hidroğrafik planlanması [Yayınlanmamış Doktora Tezi, İstanbul Üniversitesi]. İstanbul.
  • Keller, E. A., & Pinter, N. (2002). Active tectonics: earthquakes, uplift, and landscape. Prentice Hall.
  • Koçyiğit, M. B., & Akay, H. (2018). Morfometrik parametreler yardımıyla havzada muhtemel taşkın riskinin tahmin edilmesi: Akçay Havzası örneği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(4), 1321-1332. https://doi.org/10.17341/gazimmfd.416429
  • Köle, M. M. (2016). Devrez Çayı vadisinin tektonik özelliklerinin morfometrik indisler ile araştırılması. Coğrafya Dergisi, 33, 20-36.
  • Küçükönder, M. (2012). Heyelanlara ilişkili arazi değişimlerinin uzaktan algılama teknikleri ile değerlendirilmesi. [Yayımlanmamış Doktora Tezi, Çukurova Üniversitesi, Jeoloji Mühendisliği Anabilim Dalı] Adana.
  • Kürçer, A., Elmacı, H., Özdemir, E., Güven, C., Güler, T., Avcu, İ., Olgun, Ş., Avcı, H. O., Aydoğan, H., Yüce, A. A., Çetin, F. E., Ayrancı, A., Akyol, Z., A, S. Ö., Altuntaş, G., Demirörs, U., Karayazı, O., Bayrak, A., & Özalp, S. (2023). 06 Şubat 2023 Pazarcık (Kahramanmaraş) Depremi (Mw 7,7) Saha Gözlemleri ve Değerlendirmeler (14138).
  • Kvarnäs, H. (2001). Morphometry and hydrology of the four large lakes of Sweden. AMBIO: A Journal of the Human Environment, 30(8), 467-474. https://doi.org/10.1579/0044-7447-30.8.467
  • Leopold, L. B., & Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications (Vol. 252). US Government Printing Office.
  • Lim, C. H., Wong, H. L., Elfithri, R., & Teo, F. Y. (2022). A review of stakeholder engagement in integrated river basin management. Water, 14(19), 2973. https://doi.org/10.3390/w14192973
  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2011). Morphometric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, India: a GIS approach. Environmental Earth Sciences, 64, 373-381. https://doi.org/10.1007/s12665-010-0860-
  • Marchi, L., & Dalla Fontana, G. (2005). GIS morphometric indicators for the analysis of sediment dynamics in mountain basins. Environmental Geology, 48, 218-228. https://doi.org/10.1007/s00254-005-1292-4
  • McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • Melton, M. A. (1958). Correlation structure of morphometric properties of drainage systems and their controlling agents. The Journal of Geology, 66(4), 442-460. https://doi.org/10.1086/626527
  • Melton, M. A. (1965). The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. The Journal of Geology, 73(1), 1-38. https://doi.org/10.1086/627044
  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Vol. 3). The Journal of Geology, 65(1). https://doi.org/10.1086/626413
  • Mostert, E. (2003). The European Water Framework Directive and water management research. Physics and Chemistry of the Earth, Parts A/B/C, 28(12), 523-527. https://doi.org/10.1016/S1474-7065(03)00089-5
  • Mudashiru, R. B., Sabtu, N., Abustan, I., & Balogun, W. (2021). Flood hazard mapping methods: A review. Journal of Hydrology, 603, 126846. https://doi.org/10.1016/j.jhydrol.2021.126846
  • Mutar, Ş. (2023). Türkiye’de yağış rejim bölgelerindeki dönemsel değişkenliğin (1961-1990/1991-2020) faktör analizi ile belirlenmesi. [Yayınlanmamış Yüksek Lisans Tezi, Sakarya Üniversitesi].
  • Nelson, A., Reuter, H., & Gessler, P. (2009). DEM production methods and sources. Developments in soil science, 33, 65-85. https://doi.org/10.1016/S0166-2481(08)00003-2
  • Ödeker, B., & Türkoğlu, N. (2020). Sabuncular Deresi Havzası'nın (Rize/Çayeli) Morfometrik özelliklerinin coğrafi bilgi sistemleri (cbs) ile belirlenmesi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 60(1), 14-38.
  • Okay, A. I. (2008). Geology of Turkey: A synopsis. Anschnitt, 21, 19-42.
  • Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications, 156(1), 475-515.
  • Ouma, Y. O. (2016). Evaluation of multiresolution digital elevation model (DEM) from real-time kinematic GPS and ancillary data for reservoir storage capacity estimation. Hydrology, 3(2), 16. https://doi.org/10.3390/hydrology3020016
  • Özdemir, H. (2011). Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları; sistematik ve bölgesel. Türk Coğrafya Kurumu Yayınları, 457-474.
  • Ozdemir, H., & Akbas, A. (2023). Is there a consistency in basin morphometry and hydrodynamic modelling results in terms of the flood generation potential of basins? A case study from the Ulus River Basin (Türkiye). Journal of Hydrology, 625, 129926. https://doi.org/10.1016/j.jhydrol.2023.129926
  • Özdemir, H., & Bayrakdar, C. (2007). 16 Kasım 2007 Tuzla Deresi taşkının nedenleri üzerine bir araştırma (Silivri-İstanbul). Türk Coğrafya Dergisi, 49, 123-139.
  • Özdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology, 56, 1405-1415. https://doi.org/10.1007/s00254-008-1235-y
  • Özşahin, E. (2015). Hoşköy deresi havzası’nın (tekirdağ) jeomorfometrik özellikleri. The Journal of Academic Social Science Studies, 33(1), 99-120. http://dx.doi.org/10.9761/JASSS2678
  • Pakhmode, V., Kulkarni, H., & Deolankar, S. (2003). Hydrological-drainage analysis in watershed-programme planning: a case from the Deccan basalt, India. Hydrogeology Journal, 11, 595-604. https://doi.org/10.1007/s10040-003-0279-z
  • Pankaj, A., & Kumar, P. (2009). GIS-based morphometric analysis of five major sub-watersheds of Song River, Dehradun District, Uttarakhand with special reference to landslide incidences. Journal of the Indian Society of Remote Sensing, 37, 157-166. https://doi.org/10.1007/s12524-009-0007-9
  • Parlak, O., Yavuzoğlu, A., Bayrak, A., Olgun, Ş. (2023). 06 Şubat 2023 Ekinözü (Kahramanmaraş) Depremi (Mw 7,6) saha gözlemleri ve ön değerlendirmeler. MTA Yerbilimleri ve Madencilik Dergisi, 3(3), 81-98.
  • Parvez, M. B., & Inayathulla, M. (2019). Morphometry, hypsometry analysis and runoff estimation of Aam Talab watershed Raichur, Karnataka. International Journal of Advance Research And Innovative Ideas In Education, 5(3), 1713-1727.
  • Pawar, D., & Raskar, A. (2011). Linear aspects of basin morphometry of Panchaganga river (Kolhapur): Western Maharashtra. International Referred Research Journal, 2(20), 95-97.
  • Peltier, L. C. (1962). Area sampling for terrain analysis. The Professional Geographer, 14(2), 24-28.
  • Pike, R. J. (1995). Geomorphometry: progress, practice and prospect. Zeitschrift fur Geomorphologie NF SupplementBand, 101, 221-238.
  • Pike, R. J. (2000). Geomorphometry-diversity in quantitative surface analysis. Progress in Physical Geography, 24(1), 1-20.
  • Pike, R. J., Evans, I., & Hengl, T. (2009). Geomorphometry: A brief guide. Developments in Soil Science, 33, 3-30.
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. GSA Bulletin, 82(4), 1079-1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
  • Potter, P. E. (1957). A Quantitative geomorphic study of drainage basin characteristics in the clinch mountain area, Virginia and Tennessee. Journal of Geology, 65(1), 112-113. https://ui.adsabs.harvard.edu/link_gateway/1957JG.....65..112P/doi:10.1086/626413
  • Prabhakar, A., Singh, K., Lohani, A., & Chandniha, S. (2019). Study of Champua watershed for management of resources by using morphometric analysis and satellite imagery. Applied Water Science, 9, 1-16. https://doi.org/10.1007/s13201-019-1003-z
  • Prawiranegara, M. (2014). Spatial Multi-criteria analysis (smca) for basin-wide flood risk assessment as a tool in improving spatial planning and urban resilience policy making: a case study of Marikina River basin, Metro Manila‚ÄìPhilippines. Procedia-Social and Behavioral Sciences, 135, 18-24. https://doi.org/10.1016/j.sbspro.2014.07.319
  • Puno, G., & Puno, R. (2019). Watershed conservation prioritization using geomorphometric and land use-land cover parameters. Global Journal of Environmental Science and Management, 5(3), 279-294. https://doi.org/10.22034/GJESM.2019.03.02
  • Rai, P. K., Mishra, V. N., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment, 7, 9-20. https://doi.org/10.1016/j.rsase.2017.05.001
  • Rasemann, S., Schmidt, J., Schrott, L., & Dikau, R. (2004). Geomorphometry in mountain terrain. Springer.
  • Reddy, G. P. O., Maji, A. K., & Gajbhiye, K. S. (2004). Drainage morphometry and its influence on landform characteristics in a basaltic terrain, central India-a remote sensing and GIS approach. International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16. https://doi.org/10.1016/j.jag.2004.06.003
  • Resmî Gazete, 2014. Mekânsal Planlar Yapım Yönetmeliği, Mevzuat No: 19788, RS Tarihi: 14.06.2014, Sayısı: 29030.
  • Roy, S., Das, S., & Sengupta, S. (2023). Predicting terrain erosion susceptibility from drainage basin morphometry using ALOS-PALSAR DEM: Analysis from PCA-weighted AHP approach in a river system of Eastern India. Environment, Development and Sustainability, 25(9), 9589-9617. https://doi.org/10.1007/s10668-022-02450-z
  • Rosegrant, M. W., Ringler, C., McKinney, D. C., Cai, X., Keller, A., & Donoso, G. (2000). Integrated economic‐hydrologic water modeling at the basin scale: The Maipo River basin. Agricultural Economics, 24(1), 33-46. https://doi.org/10.1111/j.1574-0862.2000.tb00091.x
  • Rudraiah, M., Govindaiah, S., & Vittala, S. S. (2008). Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India. Journal of the Indian Society of Remote Sensing, 36, 351-360. https://doi.org/10.1007/s12524-008-0035-x
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America bulletin, 67(5), 597-646.
  • Segura, F. S., Pardo‐Pascual, J. E., Rosselló, V. M., Fornós, J. J., & Gelabert, B. (2007). Morphometric indices as indicators of tectonic, fluvial and karst processes in calcareous drainage basins, South Menorca Island, Spain. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 32(13), 1928-1946. https://doi.org/10.1002/esp.1506
  • Şen, Z. (2009). İklim değişikliği içerikli taşkın afet ve modern hesaplama yöntemleri. Su Vakfı Yayınları.
  • Şengör, A. (1980). Türkiye’nin neotektoniğinin esasları (Fundamentals of the neotectonics of Turkey). Geological Society of Turkey, Conference Series,
  • Şengör, A. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.
  • Shekar, P. R., & Mathew, A. (2022). Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system. Journal of Engineering and Applied Science, 69(1), 1-30. https://doi.org/10.1186/s44147-022-00094-4
  • Shit, P. K., Bera, B., Islam, A., Ghosh, S., & Bhunia, G. S. (2022). Introduction to drainage basin dynamics: Morphology, landscape and modelling. In P. K. Shit, B. Bera, A. Islam, S. Ghosh, & G. S. Bhunia (Eds.), Drainage Basin Dynamics: An Introduction to Morphology, Landscape and Modelling (pp. 1-9). Springer International Publishing. https://doi.org/10.1007/978-3-030-79634-1_1
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655-668.
  • Soni, S. (2017). Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 7, 2089-2102. https://doi.org/10.1007/s13201-016-0395-2
  • Sreedevi, P., Sreekanth, P., Khan, H., & Ahmed, S. (2013). Drainage morphometry and its influence on hydrology in an semi arid region: using SRTM data and GIS. Environmental Earth Sciences, 70, 839-848. https://doi.org/10.1007/s12665-012-2172-3
  • Sreedevi, P., Subrahmanyam, K., & Ahmed, S. (2005). The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 47, 412-420. https://doi.org/10.1007/s00254-004-1166-1
  • Steinke, V. A., & Sano, E. E. (2011). Semi-automatic identification, GIS-based morphometry of geomorphic features of Federal District of Brazil. Revista Brasileira de Geomorfologia, 12(1). https://doi.org/10.20502/rbg.v12i1.213
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological society of America bulletin, 63(11), 1117-1142.
  • Strahler, A. N. (1958). Dimensional analysis applied to fluvially eroded landforms. GSA Bulletin, 69(3), 279-300. https://doi.org/10.1130/0016-7606(1958)69[279:DAATFE]2.0.CO;2
  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basin and channel networks. Handbook of Applied Hydrology.
  • Sukristiyanti, S., Maria, R., & Lestiana, H. (2018). Watershed-based morphometric analysis: a review. IOP conference series: earth and environmental science.
  • Sutradhar, S., & Mondal, P. (2023). Prioritization of watersheds based on morphometric assessment in relation to flood management: A case study of Ajay river basin, Eastern India. Watershed Ecology and the Environment, 5, 1-11.
  • Thomas, J., Joseph, S., Thrivikramji, K., & Abe, G. (2011). Morphometric analysis of the drainage system and its hydrological implications in the rain shadow regions, Kerala, India. Journal of Geographical Sciences, 21, 1077-1088. https://doi.org/10.1007/s11442-011-0901-2
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94. https://doi.org/10.2307/210739
  • Topuz, M., & Karabulut, M. (2016). Limonlu ve Alata havzalarının (Mersin-Erdemli) jeomorfometrik analizi. International Periodical for the Languages, Literature and History of Turkish or Turkic, 11/2, 1231-1250. http://dx.doi.org/10.7827/TurkishStudies.9165
  • Turoğlu, H. (1997). İyidere Havzasının hidroğrafik özelliklerine sayısal yaklaşım. Türk Coğrafya Dergisi, 32, 355-364.
  • Turoğlu, H., & Aykut, T. (2019). Ergene Nehri havzası için hidromorfometrik analizlerle taşkın duyarlılık değerlendirmesi. Jeomorfolojik Araştırmalar Dergisi, 2, 1-15.
  • Utlu, M., & Özdemir, H. (2018). Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı havzası örneği. Coğrafya Dergisi, 36, 49-62.
  • Uzun, M. (2021). İnegöl Havzasinda drenaj aği gelişimi ve flüvyal süreçlerin morfometrik analizlerle incelenmesi. Ege Coğrafya Dergisi, 30(1), 85-106. https://doi.org/10.51800/ecd.906685
  • Uzun, M., & Garipağaoğlu, N. (2020). Havza yönetiminin gelişim evreleri ve farklı modelleri. lnternational Journal of Geography and Geography Education, 43, 338-357. https://doi.org/10.32003/igge.816758
  • Vedat, A., & Sunkar, M. (2015). Giresun'da sel ve taşkın oluşumuna neden olan Aksu Çayı ve Batlama Deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30, 91-119.
  • Waikar, M., & Nilawar, A. P. (2014). Morphometric analysis of a drainage basin using geographical information system: a case study. International Journal of Multidisciplinary and Current Research, 2(2014), 179-184.
  • Yıldırım, A., & Karadoğan, S. (2011). Raman Dağları güneyinde (Dicle Vadisi) morfometrik ve morfotektonik analizler. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 16, 154-166.
  • Yılmaz, E. (2020). Türkiye’de Thornthwaite İklim İndislerindeki Eğilimler. Coğrafya Dergisi, 40, 163-185.https://doi.org/10.26650/JGEOG2019-0005
  • Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611-623. https://doi.org/10.1007/s12665-010-0551-1
  • Youssef, F. B., & Doumit, J. A. (2023). Morphometric analysis of hillslope evolution in the Kadisha River Basin based on archived aerial photographs. Geosystems and Geoenvironment, 2(1), 100132. https://doi.org/10.1016/j.geogeo.2022.100132
  • Zaidi, F. K. (2011). Drainage basin morphometry for identifying zones for artificial recharge: A case study from the Gagas River Basin, India. Journal of the Geological Society of India, 77, 160-166. https://doi.org/10.1007/s12594-011-0019-2
  • Zorer, H., & Tonbul, S. (2019). Başkale havzası’nda havza gelişiminin jeomorfometrik analizlerle incelenmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 29(2), 19-38. https://doi.org/10.18069/firatsbed.536045
Toplam 149 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Türkiye Fiziki Coğrafyası
Bölüm Makaleler
Yazarlar

Güldane Şeyma Nişancı 0000-0002-4087-5886

Mehmet Emin Cihangir 0000-0001-8881-5308

Muhterem Küçükönder 0000-0001-5350-7794

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 29 Mart 2024
Kabul Tarihi 3 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 51

Kaynak Göster

APA Nişancı, G. Ş., Cihangir, M. E., & Küçükönder, M. (2024). Türkiye’de Ana Akarsu Havzaları Ölçeğinde Morfometrik İndislerle Sel/Taşkın Arasındaki İlişkinin Değerlendirilmesi. Doğu Coğrafya Dergisi, 29(51), 13-40. https://doi.org/10.17295/ataunidcd.1461010

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929