Derleme
BibTex RIS Kaynak Göster

NANOPARTİCLES IN DENTISTRY, THEIR APPLICATIONS, AND BIOCOMPATIBILITY

Yıl 2014, Cilt: 24 Sayı: 1, 125 - 133, 11.02.2015
https://doi.org/10.17567/dfd.00381

Öz

Nano-structured materials have been receiving considerable attention as a results of their unique physical and chemical properties, biological properties, and functionality due to their nano-scale size. Metallicbased nano-structured materials have created a new interesting field in all sciences for continuous investigations due to their unique properties. Dental materials with antimicrobial activity such as filling materials, cements, sealants, materials for temporary restorations, and adhesives have emerged. Their applications have led to development of new practical productions. They show good antimicrobial properties due to their large surface area to volume ratios. They can be used as effective growth inhibitors of various microorganisms. Furthermore, nanomaterials can be modified of achieve better efficiency and to facilitate their applications in different fields such as biomaterials and medicine. Nanoparticles have been used in dentistry as drug-delivery, caries control and remineralization, hypersensivity, oral biofilm management, periodontal management

Kaynakça

  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 2004; 104: 3893-946.
  • Kavaz D. Nanoteknoloji. Nanobülten 2011; 13: 12- 9.
  • Allaker RP, Ren GG. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 2008; 102: 1- 2.
  • Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restoative materials for dental caries management. Trends Biotechnol
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16: 2346-53.
  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo- Filho AC, Camargo ERde, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009; 34: 103-10.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram- negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73: 1712-20.
  • Herrera M, Carrion P, Baca P, Liebana J, Castillo A. In vitro antibacterial activity of glass-ionomer cements. Microbios 2001; 104: 141-8.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as an antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275: 177-82.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27: 76-83.
  • Casemiro LA, Gomes-Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic rezins with in corporated silver-zinczeolite—Part1. Gerodontology 2008; 25: 187-94.
  • Kawahara K, Tsuruda K, Morishita M, Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under an aerobic conditions. Dent Mater 2000; 16: 452-5. 13. Homouda MI. Current nanoparticles in medical and dental biomaterials. J Biomed Res 2012; 26: 143-51. perspectives of
  • Derg 2002; 28: 263-70.
  • Ulusoy N, Gökay O, Müjdeci A. Farklı kalınlıklarda uygulanan yeni geliştirilmiş üç kompozitin yüzey sertliği. A Ü Diş Hek Fak Derg 2000; 27: 29-35.
  • Borzabadi A, Borzabadi E, Edward L. Nanoparticles in orthodontics, a review of antimicrobial and anticarries applications. Acta Odontol Scand 2013; 10:11-4.
  • Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental orthodontic antimicrobial nanofillers and silver nanoparticles. Dent Mater adhesives using
  • Aydin Sevnic B, Hanley L. Antibacterial activity of dental nanoparticles. J Biomed Mater Res B Appl Biomater 2010; 94; 22-31. zinc oxide
  • Giersten E. Effects of mouth rinses with triclosan, zincions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004; 38: 430-5.
  • Stephen KW, Dentrifices: recent clinical findings and implications for use. Int Dent J 1993; 43: 549- 53.
  • Ahn S, Lee S, Kook J, Lim B. Experimental orthodontic antimicro-bial nanofillers and silver nanoparticles. Dent Mater 2009; 25: 206-13. adhesives using
  • Boldyryeva H, Umeda N, Plaskin OA, Takeda Y, Kishi-moto N. Highfluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Tech 2005; 196: 373-7.
  • Mariatti M, Azizan A, See CH, Chong KF. Effect of silane-based coupling agent on the properties of sil-ver nanoparticles filled epoxy composites. Compos Sci Technol 2007; 67: 2584-91.
  • Sodager A, Bahador A, Khalil S, Shahroudi As, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 2013; 57: 15-9.
  • Kumar M, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004; 104: 6017-84.
  • Lin LM, Skribner JE, Gaengler P. Factors associated with endodontic failures. J Endod 1992; 18: 625-7.
  • Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal infection. J Endod 2008; 34: 1515-20.
  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 2009; 30: 2782-9.
  • Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 2007; 86: 754-7.
  • Venegas SC, Palacios JM, Apella MC, Morando PJ, Blesa MA. Calcium modulate sinter actions between bacteria and hydroxyapatite. J Dent Res 2006; 85: 1124-8.
  • Rahiotis C, Vougiouklakis G, Eliades G. Characterization of oral films formed in the presence of a CPP-ACP agent: an in situ study. J Dent 2008; 36: 272-80.
  • Seetharam RN, Sridhar KR. Nanotoxicity: threat posed by nanoparticles. Curr Sci 2006; 93: 769-70.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: 167– 81.
  • Stewart PS. Diffusion in biofilms. J Bacteriol 2003; 185: 1485-91.
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, nanoparticles and their Endocytotic Fate inside the cellular compartment: a microscopic overview. Langmuir 2005; 21: 10644-54. of gold
  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zincoxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007; 90: 902.
  • Zhang LL, Jiang YH, Ding YL, Povey M, York D. Investigation in to the antibacterial behaviour of suspensions of nanofluids). J. Nanopart Res 2007; 9: 479-89.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran V, Thompson cochemical interactions at the nano-biointerface. Nat Mater 2009; 8: 543-57. F, Castranova Understanding biophysi
  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 2007; 12: 527-34.
  • Lütfioğlu M. Periodontal rejenerasyon ve büyüme faktörleri. Atatürk Üniv. Diş Hek Fak Derg 2007; 17: 35-43.
  • Zhang LJ, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 2009; 4: 66-80.
  • Collins PG, Avouris P. Nanotubes for electronics. Sci Am 2000; 283: 62-9.
  • Tran PA, Zhang LJ, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 2009; 61: 1097-114.
  • Martins-Jûnior PA, Alcântara CE, Resende RR, Ferreina AS. Carbon nanotubes and perspectives in oral regenerative medicine. J Dent Res 2013; 92: 575-83.
  • Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Lingrong G, Zhou B, Sun YP. Advances toward bioapplications of carbon nanotubes. J Mater Chem 2004; 14: 527-41.
  • Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett 2006; 6: 562-7.
  • Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU. Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 2004; 15: 48-54.
  • Fredriksson M, Astba¨ck J, Pamenius M, Arvidson K. A retrospective study of 236 patients with teeth restored by carbonfiber-reinforced epoxy rezin posts. J Prosthet Dent 1998; 80: 151-7.
  • Larson WR, Dixon DL. Aquilino SA, Clancy JM. The effect of carbon graphite fiber reinforcement on the strength of provisional crown and fixed partial denture rezins. J Prosthet Dent 1991; 66: 816-20.
  • Kobayashi S, Kawai W. Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties. Compos Part A 2007; 38: 114-23.
  • Zhang F, Xia Y, Xu L, Gu N. Surface modification and microstructure of single-walled carbon nanotubes for dental rezin-based composites. J Biomed Res B Appl Biomater 2008; 86: 90-7.
  • Meng T, Latta M. Physical properties of four acrylic denture base rezins. J Contemp Dent Practise 2005; 16: 93-100.
  • Kumar PS, Kumar S, Savadi RC, John J. Nanodentistry: A Paradigm Shift-from Fiction to Reality. J Indian Prosthodont Soc 2011; 11: 1-6
  • Yang J, Yao Z, Tang C, Darwell BW, Zhang H, Pan L, Liu J, Chen Z. Growth of apatite on chitosan multiwall carbon nanotube composite membranes. Appl Surf Sci 2009; 255: 8551-5.
  • Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electronic signalling. Nano Lett 2005; 5: 1107-10.
  • Yılmaz N, Akaya M. Nanoteknoloji. Türk Diş Hekimleri Birliği Dergisi 2007; 101: 76-80.
  • Cui D. Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci Nanotechnol 2007; 7: 1298-314.
  • Derman S, Kızılbey K, Akdetse ZM. Polymeric nanoparticles. Mühendislik ve Fen bilimleri Dergisi 2013; 31; 109-22.
  • Li X, Fan Y, Watari F. Current investigations into carbon nanotubes for biomedical application. Biomed Mater 2010; 5: 20.
  • Zeng HT, Lacefield WF. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters. Biomaterials 2000; 21: 23-30.
  • Chen Y, Zhang TH, Gan CH, Yu G. Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes. Carbon 2007; 45: 998-1004.
  • Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology and neuroscienc. Prog Neurobiol 2008; 87: 133-70.
  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-walled carbon nanotubes on human fibroblasts. Toxicol In Vitro 2006; 20: 1202-12.
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotubes interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155: 377-84.
  • Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 2006; 17: 391-7.
  • Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Baquey C. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon 2006; 44: 1093-9.
  • Gabay T, Jakobs E, Ben-Jacob E, Hanein Y. Engineered self-organization of neural Networks using carbon nanotube clusters. Phys A: Stat Mech Appl 2005; 350: 611-21.
  • Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodrıguez-Macıas FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE. Large-scale purification of single- wall carbon nanotubes: process, product, and characterization. Appl Phys A: Mater Sci Proc 1998; 67: 29-37.
  • Fei B, Lu H, Hu Z, Xin JH. Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology 2006; 17: 1589-93.
  • Jos A, Pichardo S, Puerto M, Sánchez E, Grilo A, Cameán AM. Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human in testinal cellline Caco-2. Toxicol In Vitro 2009; 23: 1491-6.
  • Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with humanneuroblastomacells. Nanomed Nanotechnol Med 2009; 5: 424-31.
  • Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann S. Fairbrother DH. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011; 49: 24-36.
  • Zhang YB, Xu Y, Li ZG, Chen T, Lantz SM, Howard PC, Paule MG, Jr Slikker W, Watanabe F, Mustafa T, Biris AS, Ali SF. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 2011; 5: 7020-33.
  • Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6: 1261-8.

DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK

Yıl 2014, Cilt: 24 Sayı: 1, 125 - 133, 11.02.2015
https://doi.org/10.17567/dfd.00381

Öz

Nanopartiküller nano boyutlarından dolayı fonksiyonellik, biyolojik özellikler, eşsiz fiziksel ve kimyasal özelliklerinin bir sonucu olarak büyük oranda dikkat çekmişlerdir. Metal esaslı nanomateryaller üstün özelliklerinden dolayı tüm bilim dallarında yeni bir ilgi alanı oluşturmuştur.  Bunların uygulamaları yeni pratik ürünlerin gelişmesine yol açmıştır.  Dolgu materyalleri, simanlar, fissür örtücüler, geçici restorasyonlar ve adezivler gibi antimikrobiyal etkiye sahip dental materyaller ortaya çıkmıştır. Metal nanopartiküller büyük yüzey alanı/hacim oranına sahip olduklarından dolayı iyi antimikrobiyal özellikler sergilerler. Bunlar çeşitli mikroorganizmaların büyüme inhibitörü olarak kullanılabilirler. Dahası, nanomateryallerin daha etkili olmaları biyomateryal ve tıp gibi farklı alanlarda kullanımlarını kolaylaştırmak için modifiye edilebilirler. Nanopartiküller ilaç salımı, çürük kontrolü ve remineralizasyon, biyofilm oluşumunun önlenmesi, periodontal enfeksiyon, kök kanal dezenfeksiyonu, dentin hassasiyetinin giderilmesi gibi diş hekimliğinin pek çok alanında kullanılmalarına rağmen bazı nanopartiküller oral ve diğer dokular için toksik olabilirler. İnsan hücreleri için nanoteknoloji ürünlerinin muhtemel toksisitesi ile ilgili bilgi sınırlıdır. Dental biyomateryaller üzerinde nanopartiküllerin uzun süreli antimikrobiyal, toksik, fiziksel ve klinik etkileri daha ileri çalışmalarda araştırılması gerekir.

Kaynakça

  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 2004; 104: 3893-946.
  • Kavaz D. Nanoteknoloji. Nanobülten 2011; 13: 12- 9.
  • Allaker RP, Ren GG. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 2008; 102: 1- 2.
  • Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restoative materials for dental caries management. Trends Biotechnol
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16: 2346-53.
  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo- Filho AC, Camargo ERde, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 2009; 34: 103-10.
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram- negative bacterium Escherichia coli. Appl Environ Microbiol 2007; 73: 1712-20.
  • Herrera M, Carrion P, Baca P, Liebana J, Castillo A. In vitro antibacterial activity of glass-ionomer cements. Microbios 2001; 104: 141-8.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as an antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275: 177-82.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27: 76-83.
  • Casemiro LA, Gomes-Martins CH, Pires-de-Souza Fde C, Panzeri H. Antimicrobial and mechanical properties of acrylic rezins with in corporated silver-zinczeolite—Part1. Gerodontology 2008; 25: 187-94.
  • Kawahara K, Tsuruda K, Morishita M, Uchida M. Antibacterial effect of silver-zeolite on oral bacteria under an aerobic conditions. Dent Mater 2000; 16: 452-5. 13. Homouda MI. Current nanoparticles in medical and dental biomaterials. J Biomed Res 2012; 26: 143-51. perspectives of
  • Derg 2002; 28: 263-70.
  • Ulusoy N, Gökay O, Müjdeci A. Farklı kalınlıklarda uygulanan yeni geliştirilmiş üç kompozitin yüzey sertliği. A Ü Diş Hek Fak Derg 2000; 27: 29-35.
  • Borzabadi A, Borzabadi E, Edward L. Nanoparticles in orthodontics, a review of antimicrobial and anticarries applications. Acta Odontol Scand 2013; 10:11-4.
  • Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental orthodontic antimicrobial nanofillers and silver nanoparticles. Dent Mater adhesives using
  • Aydin Sevnic B, Hanley L. Antibacterial activity of dental nanoparticles. J Biomed Mater Res B Appl Biomater 2010; 94; 22-31. zinc oxide
  • Giersten E. Effects of mouth rinses with triclosan, zincions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Res 2004; 38: 430-5.
  • Stephen KW, Dentrifices: recent clinical findings and implications for use. Int Dent J 1993; 43: 549- 53.
  • Ahn S, Lee S, Kook J, Lim B. Experimental orthodontic antimicro-bial nanofillers and silver nanoparticles. Dent Mater 2009; 25: 206-13. adhesives using
  • Boldyryeva H, Umeda N, Plaskin OA, Takeda Y, Kishi-moto N. Highfluence implantation of negative metal ions into polymers for surface modification and nanoparticle formation. Surf Coat Tech 2005; 196: 373-7.
  • Mariatti M, Azizan A, See CH, Chong KF. Effect of silane-based coupling agent on the properties of sil-ver nanoparticles filled epoxy composites. Compos Sci Technol 2007; 67: 2584-91.
  • Sodager A, Bahador A, Khalil S, Shahroudi As, Kassaee MZ. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J Prosthodont Res 2013; 57: 15-9.
  • Kumar M, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004; 104: 6017-84.
  • Lin LM, Skribner JE, Gaengler P. Factors associated with endodontic failures. J Endod 1992; 18: 625-7.
  • Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal infection. J Endod 2008; 34: 1515-20.
  • Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 2009; 30: 2782-9.
  • Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res 2007; 86: 754-7.
  • Venegas SC, Palacios JM, Apella MC, Morando PJ, Blesa MA. Calcium modulate sinter actions between bacteria and hydroxyapatite. J Dent Res 2006; 85: 1124-8.
  • Rahiotis C, Vougiouklakis G, Eliades G. Characterization of oral films formed in the presence of a CPP-ACP agent: an in situ study. J Dent 2008; 36: 272-80.
  • Seetharam RN, Sridhar KR. Nanotoxicity: threat posed by nanoparticles. Curr Sci 2006; 93: 769-70.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: 167– 81.
  • Stewart PS. Diffusion in biofilms. J Bacteriol 2003; 185: 1485-91.
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, nanoparticles and their Endocytotic Fate inside the cellular compartment: a microscopic overview. Langmuir 2005; 21: 10644-54. of gold
  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zincoxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007; 90: 902.
  • Zhang LL, Jiang YH, Ding YL, Povey M, York D. Investigation in to the antibacterial behaviour of suspensions of nanofluids). J. Nanopart Res 2007; 9: 479-89.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran V, Thompson cochemical interactions at the nano-biointerface. Nat Mater 2009; 8: 543-57. F, Castranova Understanding biophysi
  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 2007; 12: 527-34.
  • Lütfioğlu M. Periodontal rejenerasyon ve büyüme faktörleri. Atatürk Üniv. Diş Hek Fak Derg 2007; 17: 35-43.
  • Zhang LJ, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 2009; 4: 66-80.
  • Collins PG, Avouris P. Nanotubes for electronics. Sci Am 2000; 283: 62-9.
  • Tran PA, Zhang LJ, Webster TJ. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliv Rev 2009; 61: 1097-114.
  • Martins-Jûnior PA, Alcântara CE, Resende RR, Ferreina AS. Carbon nanotubes and perspectives in oral regenerative medicine. J Dent Res 2013; 92: 575-83.
  • Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Lingrong G, Zhou B, Sun YP. Advances toward bioapplications of carbon nanotubes. J Mater Chem 2004; 14: 527-41.
  • Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett 2006; 6: 562-7.
  • Webster TJ, Waid MC, McKenzie JL, Price RL, Ejiofor JU. Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 2004; 15: 48-54.
  • Fredriksson M, Astba¨ck J, Pamenius M, Arvidson K. A retrospective study of 236 patients with teeth restored by carbonfiber-reinforced epoxy rezin posts. J Prosthet Dent 1998; 80: 151-7.
  • Larson WR, Dixon DL. Aquilino SA, Clancy JM. The effect of carbon graphite fiber reinforcement on the strength of provisional crown and fixed partial denture rezins. J Prosthet Dent 1991; 66: 816-20.
  • Kobayashi S, Kawai W. Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties. Compos Part A 2007; 38: 114-23.
  • Zhang F, Xia Y, Xu L, Gu N. Surface modification and microstructure of single-walled carbon nanotubes for dental rezin-based composites. J Biomed Res B Appl Biomater 2008; 86: 90-7.
  • Meng T, Latta M. Physical properties of four acrylic denture base rezins. J Contemp Dent Practise 2005; 16: 93-100.
  • Kumar PS, Kumar S, Savadi RC, John J. Nanodentistry: A Paradigm Shift-from Fiction to Reality. J Indian Prosthodont Soc 2011; 11: 1-6
  • Yang J, Yao Z, Tang C, Darwell BW, Zhang H, Pan L, Liu J, Chen Z. Growth of apatite on chitosan multiwall carbon nanotube composite membranes. Appl Surf Sci 2009; 255: 8551-5.
  • Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L. Carbon nanotube substrates boost neuronal electronic signalling. Nano Lett 2005; 5: 1107-10.
  • Yılmaz N, Akaya M. Nanoteknoloji. Türk Diş Hekimleri Birliği Dergisi 2007; 101: 76-80.
  • Cui D. Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci Nanotechnol 2007; 7: 1298-314.
  • Derman S, Kızılbey K, Akdetse ZM. Polymeric nanoparticles. Mühendislik ve Fen bilimleri Dergisi 2013; 31; 109-22.
  • Li X, Fan Y, Watari F. Current investigations into carbon nanotubes for biomedical application. Biomed Mater 2010; 5: 20.
  • Zeng HT, Lacefield WF. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters. Biomaterials 2000; 21: 23-30.
  • Chen Y, Zhang TH, Gan CH, Yu G. Wear studies of hydroxyapatite composite coating reinforced by carbon nanotubes. Carbon 2007; 45: 998-1004.
  • Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology and neuroscienc. Prog Neurobiol 2008; 87: 133-70.
  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. Cytotoxicity of single-walled carbon nanotubes on human fibroblasts. Toxicol In Vitro 2006; 20: 1202-12.
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. Multi-walled carbon nanotubes interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155: 377-84.
  • Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C. Carbon nanotube biocompatibility with cardiac muscle cells. Nanotechnology 2006; 17: 391-7.
  • Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Baquey C. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon 2006; 44: 1093-9.
  • Gabay T, Jakobs E, Ben-Jacob E, Hanein Y. Engineered self-organization of neural Networks using carbon nanotube clusters. Phys A: Stat Mech Appl 2005; 350: 611-21.
  • Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodrıguez-Macıas FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE. Large-scale purification of single- wall carbon nanotubes: process, product, and characterization. Appl Phys A: Mater Sci Proc 1998; 67: 29-37.
  • Fei B, Lu H, Hu Z, Xin JH. Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology 2006; 17: 1589-93.
  • Jos A, Pichardo S, Puerto M, Sánchez E, Grilo A, Cameán AM. Cytotoxicity of carboxylic acid functionalized single wall carbon nanotubes on the human in testinal cellline Caco-2. Toxicol In Vitro 2009; 23: 1491-6.
  • Vittorio O, Raffa V, Cuschieri A. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with humanneuroblastomacells. Nanomed Nanotechnol Med 2009; 5: 424-31.
  • Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann S. Fairbrother DH. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011; 49: 24-36.
  • Zhang YB, Xu Y, Li ZG, Chen T, Lantz SM, Howard PC, Paule MG, Jr Slikker W, Watanabe F, Mustafa T, Biris AS, Ali SF. Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells. ACS Nano 2011; 5: 7020-33.
  • Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6: 1261-8.
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Makaleler
Yazarlar

Perihan Oyar

Yayımlanma Tarihi 11 Şubat 2015
Yayımlandığı Sayı Yıl 2014 Cilt: 24 Sayı: 1

Kaynak Göster

APA Oyar, P. (2015). DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 24(1), 125-133. https://doi.org/10.17567/dfd.00381
AMA Oyar P. DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK. Ata Diş Hek Fak Derg. Şubat 2015;24(1):125-133. doi:10.17567/dfd.00381
Chicago Oyar, Perihan. “DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24, sy. 1 (Şubat 2015): 125-33. https://doi.org/10.17567/dfd.00381.
EndNote Oyar P (01 Şubat 2015) DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24 1 125–133.
IEEE P. Oyar, “DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK”, Ata Diş Hek Fak Derg, c. 24, sy. 1, ss. 125–133, 2015, doi: 10.17567/dfd.00381.
ISNAD Oyar, Perihan. “DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 24/1 (Şubat 2015), 125-133. https://doi.org/10.17567/dfd.00381.
JAMA Oyar P. DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK. Ata Diş Hek Fak Derg. 2015;24:125–133.
MLA Oyar, Perihan. “DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 24, sy. 1, 2015, ss. 125-33, doi:10.17567/dfd.00381.
Vancouver Oyar P. DİŞ HEKİMLİĞİNDE KULLANILAN NANOPARTİKÜLLER, KULLANIM ALANLARI VE BİYOUYUMLULUK. Ata Diş Hek Fak Derg. 2015;24(1):125-33.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.