Türkiye’de Varroa Akarlarında Lake Sinai Virus (LSV)’ un İlk Tespiti
Yıl 2022,
Cilt: 17 Sayı: 1, 16 - 19, 29.04.2022
Abdurrahman Anıl Çağırgan
,
Murat Kaplan
,
Kemal Pekmez
,
Fatih Arslan
Öz
Arı virusları koloni sağlığını olumsuz yönde etkileyen en önemli faktörlerdendir. Virusların genellikle koloni kayıplarıyla bağlantılı olduğu bilinmektedir. Koloni sağlığını etkileyen viruslardan olan LSV, bal arılarında ilk kez 2009 yılında Amerika Birleşik Devletleri (ABD)’ nde keşfedilmiş henüz sınıflandıralamamış bir RNA virusudur. Patojenitesi henüz tam olarak bilinmemesine rağmen koloni sağlığını etkilediği bilinmektedir. Varroa akarları ise virusları bal arılarına hem biyolojik hem de mekanik olarak bulaştırarak koloni sağlığını olumsuz etkilemektedir. Bu çalışmada, arı viruslarının bal arılarına bulaşmasında vektör rolü oynayan Varroa akarlarında LSV genomunun RT-PCR ile moleküler olarak tespiti amaçlanmıştır. İzmir (n = 6) ve Muğla (n = 20) illerinde yer alan birbirinden farklı 26 arılıktan toplanan Varroa akarlarının 12’sinde LSV genomu pozitif olarak tespit edilmiştir. Muğla ilinden toplanan Varroa örneklerinin %50’si, İzmir ilinden toplanan örneklerin ise %33,3’ü LSV pozitiftir. Sonuç olarak, bu çalışmada LSV genomu ülkede ilk defa tespit edilmiş, Türkiye'de bulunan bal arılarının viral hastalıklarının bulaşmasında biyolojik veya mekanik vektörlük yapan Varroa akarları hakkındaki bilgileri genişletmeye çalışmıştır. LSV’nin Varroa akarları ile ilişkisini ve ülkedeki bal arılarının populasyonları üzerindeki gerçek etkisini belirlemek için daha ileri çalışmalara ihtiyaç duyulmaktadır.
Kaynakça
- 1. Runckel C, Flenniken ML, Engel JC, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One. 2011;6(6):e20656. [Crossref]
- 2. Grozinger CM, Flenniken ML. Bee viruses: Ecology, pathogenicity, and impacts. Annu Rev Entomol. 2019;64:205-226. [Crossref]
- 3. Granberg F, Vicente-Rubiano M, Rubio-Guerri C, et al. Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses. PLoS One. 2013;8(2):e57459. [Crossref]
- 4. Ravoet J, De Smet L, Wenseleers T, de Graaf DC. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/Rd-RP-based polymorphisms in a single host. Virus Res. 2015;201:67-72. [Crossref]
- 5. Roberts JM, Anderson DL, Durr PA. Absence of Deformed wing virus and Varroa destructor in Australia provides unique perspectives on honey bee viral landscapes and colony losses. Sci Rep. 2017;7(1):6925. [Crossref]
- 6. Šimenc L, Kuhar U, Jamnikar-Ciglenečki U, Toplak I. First complete genome of Lake Sinai Virus Lineage 3 and genetic diversity of Lake Sinai Virus strains from honey bees and Bumble bees. J Econ Entomol. 2020;113(3):1055-1061. [Crossref]
- 7. Cornman RS, Tarpy DR, Chen Y, et al. Pathogen webs in collapsing honey bee colonies. PloS One. 2012;7(8):e43562. [Crossref]
- 8. Bigot D, Dalmon A, Roy B, et al. The discovery of Halictivirus resolves the Sinaivirus phylogeny. J Gen Virol. 2017;98(11):2864-2875. [Crossref]
- 9. Shojaei A, Nourian A, Khanjani M, Mahmoodi P. The first molecular characterization of Lake Sinai virus in honey bees (Apis mellifera) and Varroa destructor mites in Iran. J Apic Res. 2021;doi:10.1080/00218839.2021.1921467 [Crossref]
- 10. Martin SJ, Highfield AC, Brettell LE, et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336(6086):1304-1306. [Crossref]
- 11. Bowen-Walker PL, Martin SJ, Gunn A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J Invertebr Pathol. 1999;73(1):101-106. [Crossref]
- 12. Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci. 2005;102(21):7470- 7475. [Crossref]
- 13. Daughenbaugh KF, Martin M, Brutscher LM, et al. Honey bee infecting Lake Sinai viruses. Viruses. 2015;7(6):3285-3309. [Crossref]
- 14. Gümüşova O, Albayrak H, Kurt M, Yazıcı Z. Prevalence of three honey bee viruses in Turkey. Veterinarski Arhiv. 2010;80(6):779-785.
- 15. Tozkar CÖ, Kence M, Kence A, Huang Q, Evans JD. Metatranscriptomic analyses of honey bee colonies. Front Genet. 2015;6:100. [Crossref]
- 16. Kalayci G, Cagirgan AA, Kaplan M, et al. The role of viral and parasitic pathogens affected by colony losses in Turkish apiaries. Kafkas Univ Vet Fak Derg. 2020;26(5):671-677.
- 17. Cagirgan AA, Yazici Z. The prevalence of seven crucial honeybee viruses using multiplex RT-PCR and their phylogenetic analysis. Turkish J Vet Anim Sci. 2021;45(1):44-55. [Crossref]
- 18. Karapınar Z, Oğuz B, Dinçer E, Öztürk C. Phylogenetic analysis of black queen cell virus and deformed wing virus in honeybee colonies infected by mites in Van, Eastern Turkey. Med Weter. 2018;74(7):460-465. [Crossref]
- 19. Oğuz B, Karapinar Z, Dinçer E, Değer MS. Molecular detection of nosema spp. and black queen-cell virus in honeybees in Van province, Turkey. Turkish J Vet Anim Sci. 2017;41(2):221-227. [Crossref]
- 20. Muz D, Muz MN. A molecular epidemiological study of black queen cell virüs in honeybees (Apis mellifera) of Turkey: the first genetic characterization and phylogenetic analysis of field viruses. Apidologie. 2017;49(4):1-12. [Crossref]
- 21. Berber E, Şimşek E, Çanakoğlu N, Sürsal N, Gençay GA. Newly identified Cryptosporidium parvum virus-1 from newborn calf diarrhoea in Turkey. Transbound Emerg Dis. 2020;68(4):2571-2580. [Crossref]
- 22. Aktaş O, Aydın H, Timurkan MO. A molecular study on the prevalence and coinfections of Rotavirus, Norovirus, Astrovirus and Adenovirus in children with gastroenteritis. Minerva Pediatrica. 2019;71(5):431-437. [Crossref]
- 23. Oğuzoğlu TÇ, Timurkan MÖ, Muz D, et al. First molecular characterization of feline immunodeficiency virus in Turkey. Arch Virol. 2010;155(11):1877-1881. [Crossref]
- 24. Timurkan MO, Aydın H. Cirit atlarında İnfluenza A Virus enfeksiyonunun serolojik ve moleküler yöntemlerle araştırılması. Atatürk Üniversitesi Vet Bil Derg. 2019;14(1):71-77. [Crossref]
- 25. Cakmak I, Aydın L, Gulegen E, Wells H. Varroa (Varroa destructor) tracheal mite (Acarapis woodi) incidence in the Republic of Turkey. J Apic Res. 2003;42(4):57-60. [Crossref]
- 26. Brasesco C, de Landa GF, Quintana S, et al. A Lake Sinai Virus variant is infecting managed honey bee colonies of Argentina with varying degrees of Varroa destructor infestation. Bee World. 2021;1:1-6. [Crossref]
- 27. Remnant EJ, Shi M, Buchmann G, et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol. 2017;91(16):e00158-17. [Crossref]
First Detection of Lake Sinai Virus (LSV) in Varroa Mites in Turkey
Yıl 2022,
Cilt: 17 Sayı: 1, 16 - 19, 29.04.2022
Abdurrahman Anıl Çağırgan
,
Murat Kaplan
,
Kemal Pekmez
,
Fatih Arslan
Öz
Bee viruses are one of the most important agents that negatively affect colony health. It is known that viruses are generally associated with colony losses. LSV, one of the viruses that affect colony health, is an RNA virus that was first detected in honey bees in 2009 in the United States of America and has not yet been classified. Although its pathogenicity is not fully known yet, it is known to affect colony health. Varroa mites affect the health of the colony negatively by transmitting viruses to honey bees both biologically and mechanically. This study, it was aimed to molecularly detect the LSV genome by RT-PCR in Varroa mites, which play a vector role in the transmission of bee viruses to honey bees. LSV genome was positive in 12 of the Varroa mites collected from 26 different apiaries in İzmir (n = 6) and Muğla (n = 20). 50% of Varroa samples collected from Muğla province and 33.3% of samples collected from İzmir province were LSV positive. In conclusion, in this study, the LSV viral genome was detected for the first time in the country, and it tried to expand the knowledge about the diversity of viral diseases of honey bees in Turkey and Varroa mites, which play a biological or mechanical role in the transmission of viral diseases. Further studies are needed to determine the association of LSV with Varroa mites and the actual impact on honey bee populations in the country.
Kaynakça
- 1. Runckel C, Flenniken ML, Engel JC, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One. 2011;6(6):e20656. [Crossref]
- 2. Grozinger CM, Flenniken ML. Bee viruses: Ecology, pathogenicity, and impacts. Annu Rev Entomol. 2019;64:205-226. [Crossref]
- 3. Granberg F, Vicente-Rubiano M, Rubio-Guerri C, et al. Metagenomic detection of viral pathogens in Spanish honeybees: co-infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses. PLoS One. 2013;8(2):e57459. [Crossref]
- 4. Ravoet J, De Smet L, Wenseleers T, de Graaf DC. Genome sequence heterogeneity of Lake Sinai Virus found in honey bees and Orf1/Rd-RP-based polymorphisms in a single host. Virus Res. 2015;201:67-72. [Crossref]
- 5. Roberts JM, Anderson DL, Durr PA. Absence of Deformed wing virus and Varroa destructor in Australia provides unique perspectives on honey bee viral landscapes and colony losses. Sci Rep. 2017;7(1):6925. [Crossref]
- 6. Šimenc L, Kuhar U, Jamnikar-Ciglenečki U, Toplak I. First complete genome of Lake Sinai Virus Lineage 3 and genetic diversity of Lake Sinai Virus strains from honey bees and Bumble bees. J Econ Entomol. 2020;113(3):1055-1061. [Crossref]
- 7. Cornman RS, Tarpy DR, Chen Y, et al. Pathogen webs in collapsing honey bee colonies. PloS One. 2012;7(8):e43562. [Crossref]
- 8. Bigot D, Dalmon A, Roy B, et al. The discovery of Halictivirus resolves the Sinaivirus phylogeny. J Gen Virol. 2017;98(11):2864-2875. [Crossref]
- 9. Shojaei A, Nourian A, Khanjani M, Mahmoodi P. The first molecular characterization of Lake Sinai virus in honey bees (Apis mellifera) and Varroa destructor mites in Iran. J Apic Res. 2021;doi:10.1080/00218839.2021.1921467 [Crossref]
- 10. Martin SJ, Highfield AC, Brettell LE, et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336(6086):1304-1306. [Crossref]
- 11. Bowen-Walker PL, Martin SJ, Gunn A. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite Varroa jacobsoni Oud. J Invertebr Pathol. 1999;73(1):101-106. [Crossref]
- 12. Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci. 2005;102(21):7470- 7475. [Crossref]
- 13. Daughenbaugh KF, Martin M, Brutscher LM, et al. Honey bee infecting Lake Sinai viruses. Viruses. 2015;7(6):3285-3309. [Crossref]
- 14. Gümüşova O, Albayrak H, Kurt M, Yazıcı Z. Prevalence of three honey bee viruses in Turkey. Veterinarski Arhiv. 2010;80(6):779-785.
- 15. Tozkar CÖ, Kence M, Kence A, Huang Q, Evans JD. Metatranscriptomic analyses of honey bee colonies. Front Genet. 2015;6:100. [Crossref]
- 16. Kalayci G, Cagirgan AA, Kaplan M, et al. The role of viral and parasitic pathogens affected by colony losses in Turkish apiaries. Kafkas Univ Vet Fak Derg. 2020;26(5):671-677.
- 17. Cagirgan AA, Yazici Z. The prevalence of seven crucial honeybee viruses using multiplex RT-PCR and their phylogenetic analysis. Turkish J Vet Anim Sci. 2021;45(1):44-55. [Crossref]
- 18. Karapınar Z, Oğuz B, Dinçer E, Öztürk C. Phylogenetic analysis of black queen cell virus and deformed wing virus in honeybee colonies infected by mites in Van, Eastern Turkey. Med Weter. 2018;74(7):460-465. [Crossref]
- 19. Oğuz B, Karapinar Z, Dinçer E, Değer MS. Molecular detection of nosema spp. and black queen-cell virus in honeybees in Van province, Turkey. Turkish J Vet Anim Sci. 2017;41(2):221-227. [Crossref]
- 20. Muz D, Muz MN. A molecular epidemiological study of black queen cell virüs in honeybees (Apis mellifera) of Turkey: the first genetic characterization and phylogenetic analysis of field viruses. Apidologie. 2017;49(4):1-12. [Crossref]
- 21. Berber E, Şimşek E, Çanakoğlu N, Sürsal N, Gençay GA. Newly identified Cryptosporidium parvum virus-1 from newborn calf diarrhoea in Turkey. Transbound Emerg Dis. 2020;68(4):2571-2580. [Crossref]
- 22. Aktaş O, Aydın H, Timurkan MO. A molecular study on the prevalence and coinfections of Rotavirus, Norovirus, Astrovirus and Adenovirus in children with gastroenteritis. Minerva Pediatrica. 2019;71(5):431-437. [Crossref]
- 23. Oğuzoğlu TÇ, Timurkan MÖ, Muz D, et al. First molecular characterization of feline immunodeficiency virus in Turkey. Arch Virol. 2010;155(11):1877-1881. [Crossref]
- 24. Timurkan MO, Aydın H. Cirit atlarında İnfluenza A Virus enfeksiyonunun serolojik ve moleküler yöntemlerle araştırılması. Atatürk Üniversitesi Vet Bil Derg. 2019;14(1):71-77. [Crossref]
- 25. Cakmak I, Aydın L, Gulegen E, Wells H. Varroa (Varroa destructor) tracheal mite (Acarapis woodi) incidence in the Republic of Turkey. J Apic Res. 2003;42(4):57-60. [Crossref]
- 26. Brasesco C, de Landa GF, Quintana S, et al. A Lake Sinai Virus variant is infecting managed honey bee colonies of Argentina with varying degrees of Varroa destructor infestation. Bee World. 2021;1:1-6. [Crossref]
- 27. Remnant EJ, Shi M, Buchmann G, et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J Virol. 2017;91(16):e00158-17. [Crossref]