Araştırma Makalesi
BibTex RIS Kaynak Göster

Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı

Yıl 2021, Cilt: 52 Sayı: 2, 176 - 189, 29.05.2021
https://doi.org/10.17097/ataunizfd.830771

Öz

Bakteriyel Kanser ve Zamklanma Hastalığı, ülkemizde kiraz yetiştiriciliği yapılan alanlarda önemli düzeyde ürün ve verim kayıplarına neden olmaktadır. Bu hastalığa Pseudomonas syringae’nin birden çok patovarı neden olmaktadır. Bu patovarlardan Pseudomonas syringae pv. syringae ’ye karşı yararlı bakterilerin biyokontrol etkileri in vitro ve in vivo koşullarda belirlenmiştir. İzmir ve Manisa illerinde bakteriyel kanser belirtisi gösteren kiraz bahçelerinden alınan 44 sağlıklı bitki örneğinden 86 yararlı bakteri izole edilmiştir. In vitro test (antibiyosis aktivite; 1-aminocyclopropane-1-carboxylate deaminaz üretimi, siderofor üretimi, hidrojen siyanid üretimi) sonuçlarına göre biyokontrol ve bitki gelişimini teşvik etme potaniyeline sahip 12 yararlı bakteri izolatı in vivo denemeler için seçilmiştir. Bu yararlı bakteri izolatları, iklim odası koşullarında mikroçoğaltım kiraz bitkicikleri üzerinde patojene karşı denenmiştir. İklim odası denemelerinin sonucunda yararlı bakteri uygulamalarının %30’u (YC1T2272, AL4HL1318, AL3HL2332, AL4T2347 kodlu izolatlar), patojenin neden olduğu hastalık şiddetini önemli seviyede (%50’nin üstünde) engelleme potansiyeli göstermiştir. Patojene karşı biyokontrol potansiyeline sahip 6 izolatın moleküler tanılaması, 16S rRNA gen sekansı kullanılarak yapılmıştır. Bu izolatlar, Pantaeo sp. (AL4HL1318, AL1T2344, AL4T2347 kodlu izolatlar), Bacillus sp. (HY1BL257 kodlu izolat), ve Erwinia sp. (YC1T2272 ve ÖR1T1302 kodlu izolatlar) olarak tanılanmıştır.

Destekleyen Kurum

EGE ÜNİVERSİTESİ ÖĞRETİM ÜYESİ YETİŞTİRME PROGRAMI (ÖYP) KOORDİNASYON BİRİMİ

Teşekkür

Mikroçoğaltım kiraz bitkilerini sağlayan AGROMİLLORA Ltd. Şti. (Türkiye) ve Genel Müdürü Serhat BOZER’e teşekkür ederim

Kaynakça

  • Akbaba, M., Ozaktan, H., 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egypt. J. Biol. Pest Control, 28 (1): 14.
  • Akbaba, M., Ozaktan, H., 2021. Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey. Egypt. J. Biol. Pest Control, 31 (1): 1-11.
  • Arwiyanto, T., 2014. Biological control of plant diseases caused by bacteria. Jurnal Perlindungan Tanaman Indonesia, 18 (1): 1-12.
  • Assumpção, L.D.C., Lacava, P.T., Dias, A.C.F., Azevedo, J.L.D., Menten, J.O.M., 2009. Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja. Pesquisa Agropecuária Brasileira, 44 (5): 503-510.
  • Babalola, O.O., 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett., 32 (11): 1559-1570.
  • Bakker, A.W., Schippers, B., 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol. Biochem.19 (4): 451-457.
  • Bakker, P.A., Pieterse, C.M., Van Loon, L.C., 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97 (2): 239-243.
  • Bashan, Y., Holguin, G., 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem., 30 (8-9): 1225-1228.
  • Başkaya, Z., 2009. Türkiye’de Kiraz Tarımının Coğrafi Esasları. Doğu Coğrafya Derg., 26: 45-72.
  • Braun-Kiewnick, A., Jacobsen, B.J., Sands, D.C., 2000. Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology, 90 (4): 368-375.
  • Bujdosó, G., Hrotkó, K., 2017. Cherry Production. In: Paławska, L.G., Quero-García, J., Iezzoni, A. (ed) Cherries: Botany, Production and Uses. CABI, Wallingford, pp. 1-13.
  • Bultreys, A., Gheysen, I., 2003. Diversity among Pseudomonas syringae strains from Belgian orchards. In: Iacobellis N.S. et al. (ed) Pseudomonas syringae and related pathogens. Springer, Dordrecht, Netherlands, pp. 69-77.
  • Bultreys, A., Kaluzna, M., 2010. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. J. Plant Pathol., 92 (1 supplement): 21-33.
  • Bülbül, M., Mirik, M., 2015. Prevalence, isolation and identification of bacterial canker pathogens on sweet cherry trees in Tekirdağ. Journal of Turkish Phytopathology, 43: 15-24.
  • Calvo, P., Nelson, L., Kloepper, J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil, 383 (1-2): 3-41.
  • Cazorla, F.M., Arrebola, E., Sesma, A., Pérez-García, A., Codina, J. C., Murillo, J., Vicente, A., 2002. Copper resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids. Phytopathology, 92: 909-916.
  • Cooksey, D. A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol., 28: 201-219.
  • Crowley, D. E., 2006. Microbial siderophores in the plant rhizosphere. In: Barton L.L., Abadia J. (ed) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht, Netherlands, pp. 169-198.
  • de Souza, R., Meyer, J., Schoenfeld, R., da Costa, P.B., Passaglia, L.M., 2015. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol., 65 (2): 951-964.
  • Donmez, M. F., Karlidag, H., Esitken, A., 2010. Identification of resistance to bacterial canker (Pseudomonas syringae pv. syringae) disease on apricot genotypes grown in Turkey. Eur. J. Plant Pathol., 126: 241-247.
  • Dworkin, M., Foster, J.W., 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol., 75 (5): 592.
  • Ertimurtas, D., 2012. Sert çekirdeklilerde bakteriyel kansere neden olan Pseudomonas syringae pathovarlarının klasik ve moleküler yöntemlerle tanısı. Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir, 82 s.
  • FAO, 2018. Production of Cherries: top 10 producers. Food and Agriculture Organization of the United Nations, Rome, http://www.fao.org/faostat/en/#data/QC/visualize (Accessed Date: 23 November 2020).
  • Geider, K., Jakovljevic, V., Mohammadi, M., Jock, S., 2006. Characterization of epiphytic bacteria from Australia and Europe as possible fire blight antagonists. Proceedings of the 1st International Symposium on Biological Control of Bacterial Plant Diseases, 23rd - 26th October 2005, Seeheim/Darmstadt, Germany, pp. 245-248.
  • Gerami, E., Hassanzadeh, N., Abdollahi, H., Ghasemi, A., Heydari, A., 2013. Evaluation of some bacterial antagonists for biological control of fire blight disease. J. Plant Pathol., 95 (1): 127-134.
  • Glick, B.R., 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica, volume 2012, (online) Article ID 963401, 15 p., (Accessed Date: 23 November 2020).
  • Glick, B.R., 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett., 251 (1): 1-7.
  • Golanowska, M., Ankiewicz, H., Taraszkiewicz, A., Kamysz, W., Czajkowski, R., Królicka, A., Jafra, S., 2012. Combined effect of the antagonistic potential of selected Pseudomonas spp. strains and the synthetic peptide “CAMEL” on Pseudomonas syringae pv. syringae and P. syringae pv. morsprunorum. J. Plant Pathol., 94 (1 suplement): 1-69.
  • Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I., 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 60 (4): 579-598.
  • Hodkinson, B.P., Lutzoni, F., 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49 (3): 163-180.
  • Iezzoni, A., Wünsch, A., Höfer, M., Giovannini, D., Jensen, M., Quero-García, J., Campoy, J. A., Vokurka, A., Barreneche, T., 2017. Biodiversity, germplasm resources and breeding methods. In: Quero-Garcia Iezzoni, A., Pulawska, J., Lang, G. (ed) Cherries: botany, production and uses. CABI International, pp. 36-59. Jetiyanon, K., Kloepper, J.W., 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control, 24 (3): 285-291.
  • Kannan, V.R., Bastas, K.K., Antony, R., 2015. Plant Pathogenic Bacteria: An Overview. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria, 1st ed., CRC Press, pp. 16-31.
  • Karahan, A., Ülke, G., Üstün, N., 2008. Sert çekirdekli meyve ağaçlarinda bakteriyel kanser ve zamklanma (Pseudomonas syringae pv. syringae, P. s. pv. morsprunorum). In:
  • Aydemir, M. (ed) Zirai Mücadele Teknik Talimatları, Cilt 4, Gıda, Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Bitki Sağlığı Araştırmaları Daire Başkanlığı, Ankara, s: 66-69
  • Kennelly, M.M., Cazorla, F.M., Vicente, A., Ramos, C., Sundin, G.W., 2007. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis., 91: 4-17.
  • Kotan, R., Sahin, F., 2002. First record of bacterial canker caused by Pseudomonas syringae pv. syringae, on apricot trees in Turkey. J. Plant Pathol., 51:798-798.
  • Liu, L., Kloepper, J., Tuzun, S., 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology, 85: 695-698.
  • Louden, B. C., Haarmann, D., Lynne, A. M., 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ., 12 (1): 51-53.
  • Mayak, S., Tirosh, T., Glick, B. R., 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci., 166 (2): 525-530.
  • Moore, L.W., 1988. Pseudomonas syringae: dısease and ice nucleation activity. Ornamentals Northwest Archives, 12 (2): 3-16.
  • Nunes, C., Usall, J., Teixidó, N., Viñas, I., 2001. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. Int. J. Food Microbiol., 70 (1-2): 53-61.
  • Omar, B.A., Atif, H.A., Mogahid, M.E., 2014. Comparison of three DNA extraction methods for polymerase chain reaction (PCR) analysis of bacterial genomic DNA. Afr. J. Microbiol. Res., 8: 598-602.
  • Otto, M., Petersen, Y., Roux, J., Wright, J., Coutinho, T.A., 2017. Bacterial canker of cherry trees, Prunus avium, in South Africa. Eur. J. Plant Pathol., 151: 427-438.
  • Ozaktan, H., Akkopru, A., Bozkurt, A., Erdal, M. 2008. Information on peach bacterial canker in Aegean Region of Turkey. In: Proceedings of STF Meeting on “Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits” COST Action 873, Bacterial diseases of stone fruits and nuts, p. 8.
  • Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., Bakker, P.A., 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol., 52: 347-375.
  • Ran, L. X., Li, Z. N., Wu, G. J., Van Loon, L. C., Bakker, P.H., 2005. Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur. J. Plant Pathol., 113 (1): 59-70.
  • Renick, L. J., Cogal, A. G., Sundin, G. W., 2008. Phenotypic and genetic analysis of epiphytic Pseudomonas syringae populations from sweet cherry in Michigan. Plant Dis., 92: 372-378.
  • Saha, M., Sarkar, S., Sarkar, B., Sharma, B.K., Bhattacharjee, S., Tribedi, P., 2016. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res., 23 (5): 3984-3999.
  • Saravanakumar, D., Samiyappan, R., 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol., 102 (5): 1283-1292.
  • Schaad, N.W., Jones, J.B, Chun, W., 2001. Laboratory guide for the identification of plant pathogenic bacteria. Vol 3, APS Press, St Paul, USA, p. 373.
  • Scheck, H.J., Pscheidt, J.W., Moore, L.W., 1996. Copper and streptomycin resistance in strains of Pseudomonas syringae from Pacific Northwest nurseries. Plant Dis., 80: 1034-1039.
  • Serce, S., Görgülü, Ö., 2009. Yapay bir veri seti ile tartılı derecelendirme yönteminin yeniden değerlendirilmesi. Alatarım, 8 (2): 43-50.
  • Sobiczewski, P., 1987. Antagonistic bacteria in relation to Pseudomonas syringae pv. syringae occurring in necroses and cankers of sour cherry trees. Fruit Science Reports, 14 (4): 179-85.
  • Spotts, R.A., Wallis, K.M., Serdani, M., Azarenko, A.N., 2010. Bacterial canker of sweet cherry in oregon-infection of horticultural and natural wounds, and resistance of cultivar and rootstock combinations. Plant Dis., 94: 345-350.
  • Sundin, G.W., Bender, C.L., 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol., 59 (4): 1018-1024.
  • Suslow, T., Schroth, M., Isaka, M., 1982. Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72: 917-918.
  • Thornton, G., Nugent, J., 1997. Bacterial canker control for sweet cherries. District Fruit IPM Agent and District Horticultural Agent Michigan State University, USA, pp. 1-3.
  • TÜİK, 2019. Bitkisel Üretim İstatistikleri, Türkiye İstatistik Kurumu, Ankara, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 23 Kasım 2020).
  • Türkoglu, K., Cınar, Ö., Öktem, Y., 1977. Sivas ve Malatya illerinde kayısı ağaçlarında kurumaların sebebleri ve en uygun mücadele metodunun tesbiti üzerinde araştırmalar. TÜBİTAK Yayınları, s. 332.
  • Vicente, J., Roberts, S., 2003. Screening wild cherry micropropagated plantlets for resistance to bacterial canker. In: Iacobellis N.S. et al. (ed) Pseudomonas syringae and related pathogens, Springer, Dordrecht, Netherlands, pp. 467-474.
  • Vicente, J.G., Alves, J.P., Russell, K., Roberts, S.J., 2004. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. Eur. J. Plant Pathol., 110: 337-351.

Use of Beneficial Bacteria for Biocontrol of Pseudomonas syringae pv. syringae on Cherry

Yıl 2021, Cilt: 52 Sayı: 2, 176 - 189, 29.05.2021
https://doi.org/10.17097/ataunizfd.830771

Öz

Bacterial Canker and Gummosis Disease causes significant yield losses in the sweet cherry growing regions in our country. This disease is caused by more than one pathovars of Pseudomonas syringae. Biocontrol effects of beneficial bacteria against Pseudomonas syringae pv. syringae that was one of these pathovars were detected in vivo and in vitro conditions. Eighty-six beneficial bacteria were isolated from 44 plant samples obtained from healthy sweet cherry plants grown in orchards affected by bacterial canker located at İzmir and Manisa provinces. Twelve beneficial bacterial strains that have biocontrol and plant growth-promoting potential according to the results of in vitro tests (antibiosis activity; 1-aminocyclopropane-1-carboxylate deaminase production, siderophore production, hydrogen cyanide production) were selected for in vivo experiments. These beneficial bacterial strains were tested against the pathogen on micropropagation cherry plantlets under climatic chamber conditions. As a result of the climate chamber experiments, 30% of beneficial bacteria treatments (strains YC1T2272, AL4HL1318, AL3HL2332, AL4T2347) have significant potential (over 50%) in preventing the disease severity caused by the pathogen. Molecular identification of six isolates that have biocontrol potential against pathogen has been made using by 16S rRNA gene sequencing. These strains were identified as Pantaeo sp. (strains AL4HL1318, AL3HL2332, AL1T2344, AL4T2347), Bacillus sp. (strain HY1BL257), and Erwinia sp. (strains YC1T2272 and ÖR1T1302).

Kaynakça

  • Akbaba, M., Ozaktan, H., 2018. Biocontrol of angular leaf spot disease and colonization of cucumber (Cucumis sativus L.) by endophytic bacteria. Egypt. J. Biol. Pest Control, 28 (1): 14.
  • Akbaba, M., Ozaktan, H., 2021. Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey. Egypt. J. Biol. Pest Control, 31 (1): 1-11.
  • Arwiyanto, T., 2014. Biological control of plant diseases caused by bacteria. Jurnal Perlindungan Tanaman Indonesia, 18 (1): 1-12.
  • Assumpção, L.D.C., Lacava, P.T., Dias, A.C.F., Azevedo, J.L.D., Menten, J.O.M., 2009. Diversidade e potencial biotecnológico da comunidade bacteriana endofítica de sementes de soja. Pesquisa Agropecuária Brasileira, 44 (5): 503-510.
  • Babalola, O.O., 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett., 32 (11): 1559-1570.
  • Bakker, A.W., Schippers, B., 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation. Soil Biol. Biochem.19 (4): 451-457.
  • Bakker, P.A., Pieterse, C.M., Van Loon, L.C., 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97 (2): 239-243.
  • Bashan, Y., Holguin, G., 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem., 30 (8-9): 1225-1228.
  • Başkaya, Z., 2009. Türkiye’de Kiraz Tarımının Coğrafi Esasları. Doğu Coğrafya Derg., 26: 45-72.
  • Braun-Kiewnick, A., Jacobsen, B.J., Sands, D.C., 2000. Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology, 90 (4): 368-375.
  • Bujdosó, G., Hrotkó, K., 2017. Cherry Production. In: Paławska, L.G., Quero-García, J., Iezzoni, A. (ed) Cherries: Botany, Production and Uses. CABI, Wallingford, pp. 1-13.
  • Bultreys, A., Gheysen, I., 2003. Diversity among Pseudomonas syringae strains from Belgian orchards. In: Iacobellis N.S. et al. (ed) Pseudomonas syringae and related pathogens. Springer, Dordrecht, Netherlands, pp. 69-77.
  • Bultreys, A., Kaluzna, M., 2010. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. J. Plant Pathol., 92 (1 supplement): 21-33.
  • Bülbül, M., Mirik, M., 2015. Prevalence, isolation and identification of bacterial canker pathogens on sweet cherry trees in Tekirdağ. Journal of Turkish Phytopathology, 43: 15-24.
  • Calvo, P., Nelson, L., Kloepper, J.W., 2014. Agricultural uses of plant biostimulants. Plant Soil, 383 (1-2): 3-41.
  • Cazorla, F.M., Arrebola, E., Sesma, A., Pérez-García, A., Codina, J. C., Murillo, J., Vicente, A., 2002. Copper resistance in Pseudomonas syringae strains isolated from mango is encoded mainly by plasmids. Phytopathology, 92: 909-916.
  • Cooksey, D. A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol., 28: 201-219.
  • Crowley, D. E., 2006. Microbial siderophores in the plant rhizosphere. In: Barton L.L., Abadia J. (ed) Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer, Dordrecht, Netherlands, pp. 169-198.
  • de Souza, R., Meyer, J., Schoenfeld, R., da Costa, P.B., Passaglia, L.M., 2015. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann. Microbiol., 65 (2): 951-964.
  • Donmez, M. F., Karlidag, H., Esitken, A., 2010. Identification of resistance to bacterial canker (Pseudomonas syringae pv. syringae) disease on apricot genotypes grown in Turkey. Eur. J. Plant Pathol., 126: 241-247.
  • Dworkin, M., Foster, J.W., 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol., 75 (5): 592.
  • Ertimurtas, D., 2012. Sert çekirdeklilerde bakteriyel kansere neden olan Pseudomonas syringae pathovarlarının klasik ve moleküler yöntemlerle tanısı. Ege Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir, 82 s.
  • FAO, 2018. Production of Cherries: top 10 producers. Food and Agriculture Organization of the United Nations, Rome, http://www.fao.org/faostat/en/#data/QC/visualize (Accessed Date: 23 November 2020).
  • Geider, K., Jakovljevic, V., Mohammadi, M., Jock, S., 2006. Characterization of epiphytic bacteria from Australia and Europe as possible fire blight antagonists. Proceedings of the 1st International Symposium on Biological Control of Bacterial Plant Diseases, 23rd - 26th October 2005, Seeheim/Darmstadt, Germany, pp. 245-248.
  • Gerami, E., Hassanzadeh, N., Abdollahi, H., Ghasemi, A., Heydari, A., 2013. Evaluation of some bacterial antagonists for biological control of fire blight disease. J. Plant Pathol., 95 (1): 127-134.
  • Glick, B.R., 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica, volume 2012, (online) Article ID 963401, 15 p., (Accessed Date: 23 November 2020).
  • Glick, B.R., 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett., 251 (1): 1-7.
  • Golanowska, M., Ankiewicz, H., Taraszkiewicz, A., Kamysz, W., Czajkowski, R., Królicka, A., Jafra, S., 2012. Combined effect of the antagonistic potential of selected Pseudomonas spp. strains and the synthetic peptide “CAMEL” on Pseudomonas syringae pv. syringae and P. syringae pv. morsprunorum. J. Plant Pathol., 94 (1 suplement): 1-69.
  • Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I., 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol., 60 (4): 579-598.
  • Hodkinson, B.P., Lutzoni, F., 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 49 (3): 163-180.
  • Iezzoni, A., Wünsch, A., Höfer, M., Giovannini, D., Jensen, M., Quero-García, J., Campoy, J. A., Vokurka, A., Barreneche, T., 2017. Biodiversity, germplasm resources and breeding methods. In: Quero-Garcia Iezzoni, A., Pulawska, J., Lang, G. (ed) Cherries: botany, production and uses. CABI International, pp. 36-59. Jetiyanon, K., Kloepper, J.W., 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control, 24 (3): 285-291.
  • Kannan, V.R., Bastas, K.K., Antony, R., 2015. Plant Pathogenic Bacteria: An Overview. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria, 1st ed., CRC Press, pp. 16-31.
  • Karahan, A., Ülke, G., Üstün, N., 2008. Sert çekirdekli meyve ağaçlarinda bakteriyel kanser ve zamklanma (Pseudomonas syringae pv. syringae, P. s. pv. morsprunorum). In:
  • Aydemir, M. (ed) Zirai Mücadele Teknik Talimatları, Cilt 4, Gıda, Tarım ve Hayvancılık Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Bitki Sağlığı Araştırmaları Daire Başkanlığı, Ankara, s: 66-69
  • Kennelly, M.M., Cazorla, F.M., Vicente, A., Ramos, C., Sundin, G.W., 2007. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis., 91: 4-17.
  • Kotan, R., Sahin, F., 2002. First record of bacterial canker caused by Pseudomonas syringae pv. syringae, on apricot trees in Turkey. J. Plant Pathol., 51:798-798.
  • Liu, L., Kloepper, J., Tuzun, S., 1995. Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology, 85: 695-698.
  • Louden, B. C., Haarmann, D., Lynne, A. M., 2011. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ., 12 (1): 51-53.
  • Mayak, S., Tirosh, T., Glick, B. R., 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci., 166 (2): 525-530.
  • Moore, L.W., 1988. Pseudomonas syringae: dısease and ice nucleation activity. Ornamentals Northwest Archives, 12 (2): 3-16.
  • Nunes, C., Usall, J., Teixidó, N., Viñas, I., 2001. Biological control of postharvest pear diseases using a bacterium, Pantoea agglomerans CPA-2. Int. J. Food Microbiol., 70 (1-2): 53-61.
  • Omar, B.A., Atif, H.A., Mogahid, M.E., 2014. Comparison of three DNA extraction methods for polymerase chain reaction (PCR) analysis of bacterial genomic DNA. Afr. J. Microbiol. Res., 8: 598-602.
  • Otto, M., Petersen, Y., Roux, J., Wright, J., Coutinho, T.A., 2017. Bacterial canker of cherry trees, Prunus avium, in South Africa. Eur. J. Plant Pathol., 151: 427-438.
  • Ozaktan, H., Akkopru, A., Bozkurt, A., Erdal, M. 2008. Information on peach bacterial canker in Aegean Region of Turkey. In: Proceedings of STF Meeting on “Determination of the incidence of the different pathovars of Pseudomonas syringae in stone fruits” COST Action 873, Bacterial diseases of stone fruits and nuts, p. 8.
  • Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M., Van Wees, S.C., Bakker, P.A., 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol., 52: 347-375.
  • Ran, L. X., Li, Z. N., Wu, G. J., Van Loon, L. C., Bakker, P.H., 2005. Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur. J. Plant Pathol., 113 (1): 59-70.
  • Renick, L. J., Cogal, A. G., Sundin, G. W., 2008. Phenotypic and genetic analysis of epiphytic Pseudomonas syringae populations from sweet cherry in Michigan. Plant Dis., 92: 372-378.
  • Saha, M., Sarkar, S., Sarkar, B., Sharma, B.K., Bhattacharjee, S., Tribedi, P., 2016. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res., 23 (5): 3984-3999.
  • Saravanakumar, D., Samiyappan, R., 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J. Appl. Microbiol., 102 (5): 1283-1292.
  • Schaad, N.W., Jones, J.B, Chun, W., 2001. Laboratory guide for the identification of plant pathogenic bacteria. Vol 3, APS Press, St Paul, USA, p. 373.
  • Scheck, H.J., Pscheidt, J.W., Moore, L.W., 1996. Copper and streptomycin resistance in strains of Pseudomonas syringae from Pacific Northwest nurseries. Plant Dis., 80: 1034-1039.
  • Serce, S., Görgülü, Ö., 2009. Yapay bir veri seti ile tartılı derecelendirme yönteminin yeniden değerlendirilmesi. Alatarım, 8 (2): 43-50.
  • Sobiczewski, P., 1987. Antagonistic bacteria in relation to Pseudomonas syringae pv. syringae occurring in necroses and cankers of sour cherry trees. Fruit Science Reports, 14 (4): 179-85.
  • Spotts, R.A., Wallis, K.M., Serdani, M., Azarenko, A.N., 2010. Bacterial canker of sweet cherry in oregon-infection of horticultural and natural wounds, and resistance of cultivar and rootstock combinations. Plant Dis., 94: 345-350.
  • Sundin, G.W., Bender, C.L., 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol., 59 (4): 1018-1024.
  • Suslow, T., Schroth, M., Isaka, M., 1982. Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72: 917-918.
  • Thornton, G., Nugent, J., 1997. Bacterial canker control for sweet cherries. District Fruit IPM Agent and District Horticultural Agent Michigan State University, USA, pp. 1-3.
  • TÜİK, 2019. Bitkisel Üretim İstatistikleri, Türkiye İstatistik Kurumu, Ankara, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 23 Kasım 2020).
  • Türkoglu, K., Cınar, Ö., Öktem, Y., 1977. Sivas ve Malatya illerinde kayısı ağaçlarında kurumaların sebebleri ve en uygun mücadele metodunun tesbiti üzerinde araştırmalar. TÜBİTAK Yayınları, s. 332.
  • Vicente, J., Roberts, S., 2003. Screening wild cherry micropropagated plantlets for resistance to bacterial canker. In: Iacobellis N.S. et al. (ed) Pseudomonas syringae and related pathogens, Springer, Dordrecht, Netherlands, pp. 467-474.
  • Vicente, J.G., Alves, J.P., Russell, K., Roberts, S.J., 2004. Identification and discrimination of Pseudomonas syringae isolates from wild cherry in England. Eur. J. Plant Pathol., 110: 337-351.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm ARAŞTIRMALAR
Yazarlar

Mustafa Akbaba 0000-0002-7029-9461

Hatice Özaktan 0000-0001-9971-6508

Yayımlanma Tarihi 29 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 52 Sayı: 2

Kaynak Göster

APA Akbaba, M., & Özaktan, H. (2021). Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52(2), 176-189. https://doi.org/10.17097/ataunizfd.830771
AMA Akbaba M, Özaktan H. Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Mayıs 2021;52(2):176-189. doi:10.17097/ataunizfd.830771
Chicago Akbaba, Mustafa, ve Hatice Özaktan. “Kirazda Pseudomonas Syringae Pv. Syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52, sy. 2 (Mayıs 2021): 176-89. https://doi.org/10.17097/ataunizfd.830771.
EndNote Akbaba M, Özaktan H (01 Mayıs 2021) Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52 2 176–189.
IEEE M. Akbaba ve H. Özaktan, “Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 52, sy. 2, ss. 176–189, 2021, doi: 10.17097/ataunizfd.830771.
ISNAD Akbaba, Mustafa - Özaktan, Hatice. “Kirazda Pseudomonas Syringae Pv. Syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52/2 (Mayıs 2021), 176-189. https://doi.org/10.17097/ataunizfd.830771.
JAMA Akbaba M, Özaktan H. Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52:176–189.
MLA Akbaba, Mustafa ve Hatice Özaktan. “Kirazda Pseudomonas Syringae Pv. Syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 52, sy. 2, 2021, ss. 176-89, doi:10.17097/ataunizfd.830771.
Vancouver Akbaba M, Özaktan H. Kirazda Pseudomonas syringae pv. syringae’nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52(2):176-89.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/