Araştırma Makalesi
BibTex RIS Kaynak Göster

Çelik Cüruflarının Tarımsal Amaçlı Kullanılması

Yıl 2023, Cilt: 54 Sayı: 1, 36 - 41, 31.01.2023
https://doi.org/10.5152/AUAF.2023.221730

Öz

Çelik cürufları çelik üretimi sırasında oluşan, depolanması veya bertaraf edilmesi çevresel sorun olabilen endüstriyel bir işlemin yan ürünleridir. Çelik cürufları, yüksek miktarda CaO içermeleri nedeniyle, toprak asiditesinin giderilmesinde toprak düzenleyicisi olarak ve aynı zamanda çeşitli konsantrasyonlarda fosfor (P), kükürt (S), mangan (Mn), demir (Fe), molibden (Mo) ve silisyum (Si) gibi bitki besin elementlerine sahip olmaları nedeniyle toprak verimliliğine ve ürün kalitesine katkı sağlamak amacıyla mineral gübre olarak kullanılma potansiyeline sahiptirler. İçerdikleri kalsiyum silikat nedeniyle çelik cürufları buğday, çeltik ve şeker kamışı gibi silisyuma duyarlılık gösteren bazı bitkiler için önemli bir besin elementi kaynağı ve birçok kültür bitkisi için de hastalıklara karşı direnç artırıcı önemli bir ürün olarak tanımlanmaktadır. Bu çalışma kapsamında değerlendirilen literatür bulguları; çelik cüruflarının tarımda alternatif kireçleme materyali olarak asit toprakların ıslahında etkin bir şekilde kullanılabileceğini, önemli miktar ve çeşitlilikte temel bitki besin elementlerine sahip olması nedeniyle toprak verimliliğine ve dolayısıyla da ürün miktarına katkı sağlama potansiyelinin olduğunu ve aynı zamanda doğrudan gübre olarak kullanılabileceği gibi, bitkisel ve hayvansal atıklarla karıştırılıp kompost yapılarak da etkin bir şekilde kullanılabileceğini göstermektedir.

Kaynakça

  • Anderson, N. P., Hart, J. M., Sullivan, D. M., Christensen, N. W., Horneck, D. A., & Pirelli, G. J. (2013). Applying lime to raise soil pH for crop production (Western Oregon). Oregon State University, Extension Service, EM9057.
  • Annunziata Branca, T. A., Pistocchi, C., Colla, V., Ragaglini, G., Amato, A., Tozzini, C., Mudersbach, D., Morillon, A., Rex, M., & Romaniello, L. (2014). Investigation of (BOF) convertor slag use for agriculture in Europe. Metallurgical Research and Technology, 111(3), 155–167. [CrossRef]
  • Beck, M., & Daniels, W. L. (2008). Tube City IMS, LLC steel slag characterization study. Department of Crop and Soil Environmental Sciences, Virginia Tech University.
  • Chand, S., Paul, B., & Kumar, M. (2015). An overview of use of Linz-Donawitz (LD) steel slag in agriculture. Current World Environment, 10(3), 975–984. [CrossRef]
  • Curtin, D., & Trolove, S. (2013). Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Research, 51(6), 494–502. [CrossRef]
  • Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40–57. [CrossRef]
  • Das, S., Gwon, H. S., Khan, M. I., Jeong, S. T., & Kim, P. J. (2020). Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Scientific Reports, 10(1), 6746. [CrossRef]
  • Das, S., Kim, G. W., Hwang, H. Y., Verma, P. P., & Kim, P. J. (2019). Cropping with slag to address soil, environment, and food security. Frontiers in Microbiology, 10, 1320. [CrossRef]
  • Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390–399. [CrossRef]
  • Horii, K., Tsutsumi, N., Kato, T., Kitano, Y., & Sugahara, K. (2015). Overview of iron/steel slag application and development of new utilization technologies [Technical Report] (s. 109). Nippon Steel and Sumitomo.
  • Ito, K. (2015). Steelmaking slag for fertilizer usage [Technical Report no. 109] (pp. 130–136). Nippon Steel & Sumitomo Metal.
  • Kourounis, S., Tsivilis, S., Tsakiridis, P. E., Papadimitriou, G. D., & Tsibouki, Z. (2007). Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 37(6), 815–822. [CrossRef]
  • Mäkelä, M., Watkins, G., Pöykiö, R., Nurmesniemi, H., & Dahl, O. (2012). Utilization of steel, pulp and paper industry solid residues in forest soil amendment: Relevant physicochemical properties and heavy metal availability. Journal of Hazardous Materials, 207–208, 21–27. [CrossRef]
  • Mamatha, D., Gowda, R. C., & Shivakumara, M. N. (2018). Effect of basic slag on yield, nutrient status and uptake by paddy in acid soils of Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 7(2), 2286–2292. [CrossRef]
  • Mihalache, M., Ilie, L., Doru, I. M., Mihalache, D., & Ildiko, A. (2016). Research on heavy metals translocation from soil amended with LF slag in wheat grains. 16th International Multidisciplinary Scientific Geoconference (SGEM 2016), Water Resources, Forest, Marine and Ocean Ecosystems Conference Proceedings (Volume II, pp. 281-286), June 30-July 06. Albena, Bulgaria.
  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21(3), 285–293. [CrossRef]
  • Munn, D. A. (2005). Steel industry slags compared with calcium carbonate in neutralizing acid mine soil. Ohio Journal of Sciences, 105(4), 79–87.
  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 1–9. [CrossRef]
  • NLA (National Lime Association). (1990). Lime: Handling, application and storage (p. 22201).
  • NSA (National Slag Association). (2021). A guide for the use of steel slag in agriculture and for reclamation of acidic lands (pp. 1–9).
  • Pinto, M., Rodriguez, M., Besga, G., Balcazar, N., & Lopez, F. A. (1995). Effects of Linz-Donawitz (LD) slag as soil properties and pasture production in the Basque Country (Northern Spain). New Zealand Journal of Agricultural Research, 38(1), 143–155. [CrossRef]
  • Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., Bigham, R. D., Connolly, M., Lee, B., Shepker, T. O., & Zak, M. A. (2000). Physical and chemical characteristics of blast furnace, basic oxygen furnace and electric arc furnace steel industry slags. Environmental Science and Technology, 34(8), 1576–1582. [CrossRef]
  • Reuter, M., Xiao, Y., & Boin, U. (2004). Recycling and environmental issues of metallurgical slags and salt fluxes. VII. International Conference on Molten Slags, Fluxes and Salts, The Southern African Institute of Mining and Metallurgy, Johannesburg, South Africa. (pp. 349–356).
  • STB (Sanayi ve Teknoloji Bakanlığı). (2020). Demir çelik sektör raporu. Sektörel Raporlar (s.: 1–35). Sanayi Genel Müdürlüğü.
  • TÇÜD (Türkiye Çelik Üreticileri Derneği). (2021). Çelik haritası. https://celik.org.tr/harita/.
  • Tozsin, G., & Oztas, T. (2022). Use of steel slag as a soil amendment and mineral fertilizer in agriculture: A mini review. Waste Management and Research, 1–28.
  • USDA (United States Department of Agriculture) (1999). Liming to improve soil quality in acid soils. Soil quality-agronomy technical note (vol. 8).
  • Wang, W., Lai, D. Y. F., Abid, A. A., Neogi, S., Xu, X., & Wang, C. (2018a). Effects of steel slag and biochar incorporation on active soil organic carbon pools in a subtropical paddy field. Agronomy, 8(8), 1–17. [CrossRef]
  • Wang, W., Sardans, J., Lai, D. Y. F., Wang, C., Zeng, C., Tong, C., Liang, Y., & Peñuelas, J. (2015). Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crops Research, 171, 146–156. [CrossRef]
  • Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Bartrons, M., & Peñuelas, J. (2018b). Steel slag amendment increases nutrient availability and rice yield in a subtropical paddy field in China. Experimental Agriculture, 54(6), 842–856. [CrossRef]
  • Wang, X., & Cai, Q. (2006). Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere, 16(4), 519–524. [CrossRef]
  • Wen, T., Yang, L., Dang, C., Miki, T., Bai, H., & Nagasaka, T. (2020). Effect of basic oxygen furnace slag on succession of the bacterial community and immobilization of various metal ions in acidic contaminated mine soil. Journal of Hazardous Materials, 388, 121784. [CrossRef]
  • Yang, Y., Reijonen, I., Yu, H., Dharmarajan, R., Seshadri, B., & Bolan, N. S. (2018). Back to basic slags as a phosphorous source and liming material. In Soil amendments for sustainability: Challenges and Perspectives (s.: 237–250). CRC Press, Taylor & Francis Group.
  • Yayan, V. (2022). Türkiye rekor üretim ile 2021 yılında da Avrupa’nın en büyük çelik üreticisi oldu. Türkiye Çelik Üreticileri Derneği, Çelik Dergisi, 133, 1–48.
  • Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An overview of utilization of steel slag. Procedia Environmental Sciences, 16, 791–801. [CrossRef]
  • Yonar, F. (2017). Elektrik ark ocağı çelikhane cürufunun karayolu esnek üstyapı tabakalarında kullanımının ve karışım performansının araştırılması [Doktora Tezi] (s. 264). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü

Use of Steel Slags for Agricultural Purposes

Yıl 2023, Cilt: 54 Sayı: 1, 36 - 41, 31.01.2023
https://doi.org/10.5152/AUAF.2023.221730

Öz

Steel slags are by-products of an industrial process formed during steelmaking, whose storage or disposal can be an environmental concern. Steel slags, due to their high CaO content, are used as soil conditioners for removing soil acidity and have the potential to be used as mineral fertilizers to contribute to soil fertility and crop quality in various concentrations such as phosphorus, sulfur, manganese, iron, molybdenum, and silicon. Due to their calcium silicate content, steel slags are defined as an important source of nutrients for some plants sensitive to silicon, such as wheat, paddy, and sugar cane, and an important input to increase resistance to diseases for many cultivated plants. This study shows that steel slags can be used effectively in the reclamation of acid soils as an alternative liming material in agriculture, and they have the potential to contribute to soil fertility and thus to crop yield as they contain a significant amount and variety of essential plant nutrients. Steel slags can also be used directly as fertilizer or mixed with vegetable and animal wastes and used as compost.

Kaynakça

  • Anderson, N. P., Hart, J. M., Sullivan, D. M., Christensen, N. W., Horneck, D. A., & Pirelli, G. J. (2013). Applying lime to raise soil pH for crop production (Western Oregon). Oregon State University, Extension Service, EM9057.
  • Annunziata Branca, T. A., Pistocchi, C., Colla, V., Ragaglini, G., Amato, A., Tozzini, C., Mudersbach, D., Morillon, A., Rex, M., & Romaniello, L. (2014). Investigation of (BOF) convertor slag use for agriculture in Europe. Metallurgical Research and Technology, 111(3), 155–167. [CrossRef]
  • Beck, M., & Daniels, W. L. (2008). Tube City IMS, LLC steel slag characterization study. Department of Crop and Soil Environmental Sciences, Virginia Tech University.
  • Chand, S., Paul, B., & Kumar, M. (2015). An overview of use of Linz-Donawitz (LD) steel slag in agriculture. Current World Environment, 10(3), 975–984. [CrossRef]
  • Curtin, D., & Trolove, S. (2013). Predicting pH buffering capacity of New Zealand soils from organic matter content and mineral characteristics. Soil Research, 51(6), 494–502. [CrossRef]
  • Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40–57. [CrossRef]
  • Das, S., Gwon, H. S., Khan, M. I., Jeong, S. T., & Kim, P. J. (2020). Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Scientific Reports, 10(1), 6746. [CrossRef]
  • Das, S., Kim, G. W., Hwang, H. Y., Verma, P. P., & Kim, P. J. (2019). Cropping with slag to address soil, environment, and food security. Frontiers in Microbiology, 10, 1320. [CrossRef]
  • Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390–399. [CrossRef]
  • Horii, K., Tsutsumi, N., Kato, T., Kitano, Y., & Sugahara, K. (2015). Overview of iron/steel slag application and development of new utilization technologies [Technical Report] (s. 109). Nippon Steel and Sumitomo.
  • Ito, K. (2015). Steelmaking slag for fertilizer usage [Technical Report no. 109] (pp. 130–136). Nippon Steel & Sumitomo Metal.
  • Kourounis, S., Tsivilis, S., Tsakiridis, P. E., Papadimitriou, G. D., & Tsibouki, Z. (2007). Properties and hydration of blended cements with steelmaking slag. Cement and Concrete Research, 37(6), 815–822. [CrossRef]
  • Mäkelä, M., Watkins, G., Pöykiö, R., Nurmesniemi, H., & Dahl, O. (2012). Utilization of steel, pulp and paper industry solid residues in forest soil amendment: Relevant physicochemical properties and heavy metal availability. Journal of Hazardous Materials, 207–208, 21–27. [CrossRef]
  • Mamatha, D., Gowda, R. C., & Shivakumara, M. N. (2018). Effect of basic slag on yield, nutrient status and uptake by paddy in acid soils of Karnataka, India. International Journal of Current Microbiology and Applied Sciences, 7(2), 2286–2292. [CrossRef]
  • Mihalache, M., Ilie, L., Doru, I. M., Mihalache, D., & Ildiko, A. (2016). Research on heavy metals translocation from soil amended with LF slag in wheat grains. 16th International Multidisciplinary Scientific Geoconference (SGEM 2016), Water Resources, Forest, Marine and Ocean Ecosystems Conference Proceedings (Volume II, pp. 281-286), June 30-July 06. Albena, Bulgaria.
  • Motz, H., & Geiseler, J. (2001). Products of steel slags an opportunity to save natural resources. Waste Management, 21(3), 285–293. [CrossRef]
  • Munn, D. A. (2005). Steel industry slags compared with calcium carbonate in neutralizing acid mine soil. Ohio Journal of Sciences, 105(4), 79–87.
  • Neina, D. (2019). The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science, 2019, 1–9. [CrossRef]
  • NLA (National Lime Association). (1990). Lime: Handling, application and storage (p. 22201).
  • NSA (National Slag Association). (2021). A guide for the use of steel slag in agriculture and for reclamation of acidic lands (pp. 1–9).
  • Pinto, M., Rodriguez, M., Besga, G., Balcazar, N., & Lopez, F. A. (1995). Effects of Linz-Donawitz (LD) slag as soil properties and pasture production in the Basque Country (Northern Spain). New Zealand Journal of Agricultural Research, 38(1), 143–155. [CrossRef]
  • Proctor, D. M., Fehling, K. A., Shay, E. C., Wittenborn, J. L., Green, J. J., Avent, C., Bigham, R. D., Connolly, M., Lee, B., Shepker, T. O., & Zak, M. A. (2000). Physical and chemical characteristics of blast furnace, basic oxygen furnace and electric arc furnace steel industry slags. Environmental Science and Technology, 34(8), 1576–1582. [CrossRef]
  • Reuter, M., Xiao, Y., & Boin, U. (2004). Recycling and environmental issues of metallurgical slags and salt fluxes. VII. International Conference on Molten Slags, Fluxes and Salts, The Southern African Institute of Mining and Metallurgy, Johannesburg, South Africa. (pp. 349–356).
  • STB (Sanayi ve Teknoloji Bakanlığı). (2020). Demir çelik sektör raporu. Sektörel Raporlar (s.: 1–35). Sanayi Genel Müdürlüğü.
  • TÇÜD (Türkiye Çelik Üreticileri Derneği). (2021). Çelik haritası. https://celik.org.tr/harita/.
  • Tozsin, G., & Oztas, T. (2022). Use of steel slag as a soil amendment and mineral fertilizer in agriculture: A mini review. Waste Management and Research, 1–28.
  • USDA (United States Department of Agriculture) (1999). Liming to improve soil quality in acid soils. Soil quality-agronomy technical note (vol. 8).
  • Wang, W., Lai, D. Y. F., Abid, A. A., Neogi, S., Xu, X., & Wang, C. (2018a). Effects of steel slag and biochar incorporation on active soil organic carbon pools in a subtropical paddy field. Agronomy, 8(8), 1–17. [CrossRef]
  • Wang, W., Sardans, J., Lai, D. Y. F., Wang, C., Zeng, C., Tong, C., Liang, Y., & Peñuelas, J. (2015). Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crops Research, 171, 146–156. [CrossRef]
  • Wang, W., Sardans, J., Wang, C., Zeng, C., Tong, C., Bartrons, M., & Peñuelas, J. (2018b). Steel slag amendment increases nutrient availability and rice yield in a subtropical paddy field in China. Experimental Agriculture, 54(6), 842–856. [CrossRef]
  • Wang, X., & Cai, Q. (2006). Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere, 16(4), 519–524. [CrossRef]
  • Wen, T., Yang, L., Dang, C., Miki, T., Bai, H., & Nagasaka, T. (2020). Effect of basic oxygen furnace slag on succession of the bacterial community and immobilization of various metal ions in acidic contaminated mine soil. Journal of Hazardous Materials, 388, 121784. [CrossRef]
  • Yang, Y., Reijonen, I., Yu, H., Dharmarajan, R., Seshadri, B., & Bolan, N. S. (2018). Back to basic slags as a phosphorous source and liming material. In Soil amendments for sustainability: Challenges and Perspectives (s.: 237–250). CRC Press, Taylor & Francis Group.
  • Yayan, V. (2022). Türkiye rekor üretim ile 2021 yılında da Avrupa’nın en büyük çelik üreticisi oldu. Türkiye Çelik Üreticileri Derneği, Çelik Dergisi, 133, 1–48.
  • Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An overview of utilization of steel slag. Procedia Environmental Sciences, 16, 791–801. [CrossRef]
  • Yonar, F. (2017). Elektrik ark ocağı çelikhane cürufunun karayolu esnek üstyapı tabakalarında kullanımının ve karışım performansının araştırılması [Doktora Tezi] (s. 264). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm DERLEMELER
Yazarlar

Gülşen Tozsin 0000-0001-5653-9919

Taşkın Öztaş 0000-0001-5001-103X

Yayımlanma Tarihi 31 Ocak 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 54 Sayı: 1

Kaynak Göster

APA Tozsin, G., & Öztaş, T. (2023). Çelik Cüruflarının Tarımsal Amaçlı Kullanılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 54(1), 36-41. https://doi.org/10.5152/AUAF.2023.221730
AMA Tozsin G, Öztaş T. Çelik Cüruflarının Tarımsal Amaçlı Kullanılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Ocak 2023;54(1):36-41. doi:10.5152/AUAF.2023.221730
Chicago Tozsin, Gülşen, ve Taşkın Öztaş. “Çelik Cüruflarının Tarımsal Amaçlı Kullanılması”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 54, sy. 1 (Ocak 2023): 36-41. https://doi.org/10.5152/AUAF.2023.221730.
EndNote Tozsin G, Öztaş T (01 Ocak 2023) Çelik Cüruflarının Tarımsal Amaçlı Kullanılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 54 1 36–41.
IEEE G. Tozsin ve T. Öztaş, “Çelik Cüruflarının Tarımsal Amaçlı Kullanılması”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 54, sy. 1, ss. 36–41, 2023, doi: 10.5152/AUAF.2023.221730.
ISNAD Tozsin, Gülşen - Öztaş, Taşkın. “Çelik Cüruflarının Tarımsal Amaçlı Kullanılması”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 54/1 (Ocak 2023), 36-41. https://doi.org/10.5152/AUAF.2023.221730.
JAMA Tozsin G, Öztaş T. Çelik Cüruflarının Tarımsal Amaçlı Kullanılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2023;54:36–41.
MLA Tozsin, Gülşen ve Taşkın Öztaş. “Çelik Cüruflarının Tarımsal Amaçlı Kullanılması”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 54, sy. 1, 2023, ss. 36-41, doi:10.5152/AUAF.2023.221730.
Vancouver Tozsin G, Öztaş T. Çelik Cüruflarının Tarımsal Amaçlı Kullanılması. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2023;54(1):36-41.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/