Araştırma Makalesi
BibTex RIS Kaynak Göster

ASSESSMENT OF THE URBAN IMPACT ON THE TEMPERATURE RECORDS OF ISTANBUL AND ANKARA: HOW CAN INDIVIDUAL METROPOLES DIFFER IN RESPOND TO URBANIZATION?

Yıl 2024, Cilt: 1 Sayı: 1, 39 - 48, 03.07.2024

Öz

This study examines the temperature variability over urban and rural sites of Istanbul and Ankara, two strategic metropoles in Turkiye, using multiple data sources, including satellite, ground observations, and a reanalysis product for the period of 2011-2018. The practice of this study is twi-formed. Firstly, we introduce a location-based analysis, in which we identify the differences in annual, seasonal, and monthly temperature characteristics of urban and rural stations using hourly 2-meter mean temperature provided from station observation data. Secondly, in the grid-based analysis, we utilize the GHS Settlement Model grid classification dataset with a resolution of 1 km to determine urban-rural grids and employ the MODIS-Terra daily land surface temperature data to reveal the long-term dissimilarity of the urban and rural grids. Also included in the grid-based analysis is the CHIRTS-daily temperature product at high resolution, which we use to compare the number of days where the daily maximum temperature exceeds a specified threshold at urban and rural grids in each city. Results reveal the variability of the temperature difference between the corresponding urban and rural grids, which we refer to as the urban heat island (UHI) effect. However, this variability is higher for Istanbul, where urban land use constitutes approximately 20% of the grids, compared to Ankara, where the percentage of the grids represented by urbanization is less than 4%. When we consider the urban land use in Istanbul, there is a clear signal of a shift in the location parameter of observed temperature values to the warmer side of the probability distribution function (PDF), as revealed by the kernel density estimation analysis. Yet, for Ankara, we do not see a notable change in the corresponding PDF. Long-term UHI analyses also support these, as the difference in annual, seasonal, and monthly temperature between urban and rural locations of Istanbul is more pronounced than in Ankara. This study communicates the importance of avoiding a broad generalization of the urban impact in different cities.

Kaynakça

  • Argueso, D., Evans, J. P., Fita, L., Bormann, K. J., 2014. Clim. Dyn. 42, 2183-2199. https://doi.org/10.1007/s00382-013-1789-6.
  • Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M., McAlpine, C. A., 2017. The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecol. 32, 1921-1935. https://doi.org/10.1007/s10980-017-0561-4.
  • Dihkan, M., Karsli, F., Guneroglu, A., Guneroglu, N., 2015. Evaluation of surface urban heat island (SUHI) effect on coastal zone: The case of Istanbul megacity. Ocean & Coastal Management 118, 309-316. https://doi.org/10.1016/j.ocecoaman.2015.03.008.
  • Doan, Q. V., Kusaka, H., Ho, Q. B., 2016. Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Clim. 17, 20-31. https://doi.org/10.1016/j.uclim.2016.04.003.
  • Donmez, B., Donmez, K., Diren-Ustun, D., Unal, Y., 2021. The Impact of Urban Land Use On the Springtime Frontal Precipitation Event in Ankara: A Case Study of 5 May 2014. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3056. https://doi.org/10.5194/egusphere-egu21-3056, 2021.
  • Donmez, K., Donmez, B., Diren-Ustun, D., Unal, Y., 2021. Assessment of Urbanization Impact On Heavy Precipitation in Istanbul, Turkey. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3057. https://doi.org/10.5194/egusphere-egu21-3057, 2021.
  • Gabriel, K. M., Endlicher, W. R., 2011. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ Pollut. 159 (8-9), 2044-2050. https://doi.org/10.1016/j.envpol.2011.01.016.
  • Karaca, M., Tayanc, M., Toros, H., 1995. Effects of urbanization on climate of Istanbul and Ankara. Atmospheric Environment 29 (23), 3411-3421. https://doi.org/10.1016/1352-2310(95)00085-D.
  • Khorrami, M., Gunduz, O., 2020. patio-temporal interactions of surface urban heat island and its spectral indicators: A case study from Istanbul metropolitan area, Turkey. Environmental Monitoring and Assessment 192 (6). https://doi.org/10.1007/s10661-020-08322-1.
  • Li, Y., Fowler, H. J., Argueso, D., Blenkinsop, S., Evans, J. P., Lenderink, G., Yan, X., Guerreiro, S. B., Lewis, E., Li, X., 2020. Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett. 47 (14). https://doi.org/10.1029/2020gl088758.
  • Liao, W., Liu, X., Li, D., Luo, M., Wang, D., Wang, S., 2018. Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett. 45, 11310-11317. https://doi.org/10.1029/2018GL079679.
  • Lu, F., Xiao, W.H., Yan, D.H., Wang, H., 2017. Progresses on statistical modeling of nonstationary extreme sequences and its application in climate and hydrological change. J. Hydraul. Eng. 48 (4), 379 389. https://doi.org/10.13243/j.cnki.slxb.20160281.
  • Lu, M., Xu, Y., Shan, N., Wang, Q., Yuan, J., Wang, J., 2019. Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. Sci. Total Environ. 673, 64. https://doi.org/10.1016/j.scitotenv.2019.03.413.
  • Niyogi, D., Osuri, K. K., Busireddy, N., Nadimpalli, R., 2020. Timing of rainfall occurrence altered by urban sprawl. Urban Clim. 33, 100643. https://doi.org/10.1016/j.uclim.2020.100643.
  • Perkins, S. E., Alexander, L. V., Nairn, J. R., 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, L20714. https://doi.org/10.1029/2012GL053361.
  • Pesaresi, M., Florczyk, A., Schiavina, M., Melchiorri, M., Maffenini, L., 2019. GHS settlement grid, updated and refined REGIO model 2014 in application to GHS-BUILT R2018A and GHS-POP R2019A, multitemporal (1975-1990-2000-2015), R2019A. European Commission, Joint Research Centre (JRC). http://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218.
  • Shimadera, H., Kondo, A., Shrestha, K. L., Kitaoka, K., Inoue, Y., 2015. Numerical evaluation of the impact of urbanization on summertime precipitation in Osaka, Japan. Advances in Meteorology 1-11, https://doi.org/10.1155/2015/379361.
  • Turkoglu, N., 2009. Analysis of urban effects on soil temperature in Ankara. Environmental Monitoring and Assessment, 169(1-4), 439-450. https://doi.org/10.1007/s10661-009-1187-z.
  • Unal, Y., Sonuc, C. Y., Incecik, S., Topcu, S., 2020. Investigating urban heat island intensity in Istanbul. Theor. Appl. Climatol. 139 (84), 175-190. https://doi.org/10.1007/s00704-019-02953-2.
  • Verdin, A., Funk, C., Peterson, P., Landsfeld, M., Tuholske, C., Grace, K., 2020. Development and validation of the CHIRTS-daily quasi-global high-resolution daily temperature data set. 7 (303). https://doi.org/10.1038/s41597-020-00643-7.
  • Wan, Z., Hook, S., Hulley, G., 2015. MOD11_L2 MODIS/Terra Land Surface Temperature/Emissivity 5-Min L2 Swath 1km V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD11_L2.006.
  • Yao, R., Zhang, S., Sun, P., Dai, Q., Yang, Q., 2022. Estimating the impact of urbanization on non-stationary models of extreme precipitation events in the Yangtze River Delta metropolitan region. Weather and Climate Extremes, 36, 100445. https://doi.org/10.1016/j.wace.2022.100445.
  • Zaeemdar, S., Baycan, T., 2017. Analysis of the relationship between urban heat island and land cover in Istanbul through Landsat 8 OLI. Journal of Earth Science & Climatic Change 8 (11). https://doi.org/10.4172/2157-7617.1000423.
  • Zhang, G., Azorin-Molina, C., Wang, X., Chen, D., McVicar, T. R., Guijarro, J. A., Chappell, A., Deng, K., Minola, L., Kong, F., Wang, S., Shi, P., 2022. Rapid urbanization induced daily maximum wind speed decline in metropolitan areas: A case study in the Yangtze River Delta (China). Urban Clim. 43, 101147. https://doi.org/10.1016/j.uclim.2022.101147.

İSTANBUL VE ANKARA'NIN SICAKLIK KAYITLARINDAKİ KENTSEL ETKİNİN DEĞERLENDİRİLMESİ: BİREYSEL OLARAK METROPOLLER KENTSELLEŞMEYE YANITTA NASIL FARKLILIK GÖSTEREBİLİR?

Yıl 2024, Cilt: 1 Sayı: 1, 39 - 48, 03.07.2024

Öz

Bu çalışma, Türkiye'nin stratejik metropolleri olan İstanbul ve Ankara'nın kentsel ve kırsal bölgelerindeki sıcaklık değişkenliğini, 2011-2018 dönemini kapsayan periyot için uydu, yer gözlemleri ve Avrupa Orta Vadeli Hava Tahmin Merkezi (ECMWF) reanaliz verilerini kullanarak incelemektedir. Bu çalışmanın uygulaması iki temel bileşenden oluşmaktadır. İlk olarak, istasyon gözlemlerinden sağlanan saatlik 2 metre ortalama sıcaklık verileri kullanılarak kentsel ve kırsal istasyonların yıllık, mevsimsel ve aylık sıcaklık özelliklerindeki farklılıklar şehir özelinde analiz edilmiştir. İkinci olarak, GHS Yerleşim Modeli 1 km çözünürlüğünde veri seti kullanılarak kentsel ve kırsal grid noktaları belirlenmiş ve MODIS-Terra günlük yüzey sıcaklık verileriyle kentsel ve kırsal grid noktaları arasındaki uzun vadeli farklılıkları ortaya konmuştur. Ayrıca, grid tabanlı analizde, her şehirde kentsel ve kırsal alanlarda günlük maksimum sıcaklığın belirli bir eşiği aşan gün sayısını karşılaştırmak için yüksek çözünürlüklü CHIRTS-günlük sıcaklık ürünü kullanılmıştır. Sonuçlar, kentsel ısı adası (UHI) etkisi olarak adlandırılan kentsel ve kırsal alanlar arasındaki sıcaklık farkı değişkenliği incelenmiştir. Ancak, bu değişkenlik, kentsel alanların toplam çalışma alanının yaklaşık %20'sini oluşturduğu İstanbul için kentsel alanların %4'ten daha az olduğu Ankara'ya göre çok daha yüksek tespit edilmiştir. İstanbul'daki kentsel kullanımı dikkate aldığımızda, gözlemlenen sıcaklık değerlerinin, olasılık dağılım fonksiyonunun (PDF) daha sıcak bir tarafına kaydığına dair net bir sinyal bulunmakta ve bu durum kernel yoğunluk kestirimi analizi ile ortaya konmaktadır. Ancak, Ankara için karşılık gelen PDF analizinde dikkate değer bir değişiklik görülmemektedir. Uzun vadeli UHI analizleri de bu bulguları desteklemekte olup, İstanbul'un kentsel ve kırsal konumları arasındaki yıllık, mevsimsel ve aylık sıcaklık farkı, Ankara'ya kıyasla daha belirgindir. Bu çalışma, farklı şehirlerde kentsel etkinin geniş bir genelleştirmesinden kaçınmanın önemini aktarmaktadır.

Kaynakça

  • Argueso, D., Evans, J. P., Fita, L., Bormann, K. J., 2014. Clim. Dyn. 42, 2183-2199. https://doi.org/10.1007/s00382-013-1789-6.
  • Chapman, S., Watson, J. E. M., Salazar, A., Thatcher, M., McAlpine, C. A., 2017. The impact of urbanization and climate change on urban temperatures: a systematic review. Landscape Ecol. 32, 1921-1935. https://doi.org/10.1007/s10980-017-0561-4.
  • Dihkan, M., Karsli, F., Guneroglu, A., Guneroglu, N., 2015. Evaluation of surface urban heat island (SUHI) effect on coastal zone: The case of Istanbul megacity. Ocean & Coastal Management 118, 309-316. https://doi.org/10.1016/j.ocecoaman.2015.03.008.
  • Doan, Q. V., Kusaka, H., Ho, Q. B., 2016. Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Clim. 17, 20-31. https://doi.org/10.1016/j.uclim.2016.04.003.
  • Donmez, B., Donmez, K., Diren-Ustun, D., Unal, Y., 2021. The Impact of Urban Land Use On the Springtime Frontal Precipitation Event in Ankara: A Case Study of 5 May 2014. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3056. https://doi.org/10.5194/egusphere-egu21-3056, 2021.
  • Donmez, K., Donmez, B., Diren-Ustun, D., Unal, Y., 2021. Assessment of Urbanization Impact On Heavy Precipitation in Istanbul, Turkey. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-3057. https://doi.org/10.5194/egusphere-egu21-3057, 2021.
  • Gabriel, K. M., Endlicher, W. R., 2011. Urban and rural mortality rates during heat waves in Berlin and Brandenburg, Germany. Environ Pollut. 159 (8-9), 2044-2050. https://doi.org/10.1016/j.envpol.2011.01.016.
  • Karaca, M., Tayanc, M., Toros, H., 1995. Effects of urbanization on climate of Istanbul and Ankara. Atmospheric Environment 29 (23), 3411-3421. https://doi.org/10.1016/1352-2310(95)00085-D.
  • Khorrami, M., Gunduz, O., 2020. patio-temporal interactions of surface urban heat island and its spectral indicators: A case study from Istanbul metropolitan area, Turkey. Environmental Monitoring and Assessment 192 (6). https://doi.org/10.1007/s10661-020-08322-1.
  • Li, Y., Fowler, H. J., Argueso, D., Blenkinsop, S., Evans, J. P., Lenderink, G., Yan, X., Guerreiro, S. B., Lewis, E., Li, X., 2020. Strong intensification of hourly rainfall extremes by urbanization. Geophys. Res. Lett. 47 (14). https://doi.org/10.1029/2020gl088758.
  • Liao, W., Liu, X., Li, D., Luo, M., Wang, D., Wang, S., 2018. Stronger contributions of urbanization to heat wave trends in wet climates. Geophys. Res. Lett. 45, 11310-11317. https://doi.org/10.1029/2018GL079679.
  • Lu, F., Xiao, W.H., Yan, D.H., Wang, H., 2017. Progresses on statistical modeling of nonstationary extreme sequences and its application in climate and hydrological change. J. Hydraul. Eng. 48 (4), 379 389. https://doi.org/10.13243/j.cnki.slxb.20160281.
  • Lu, M., Xu, Y., Shan, N., Wang, Q., Yuan, J., Wang, J., 2019. Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. Sci. Total Environ. 673, 64. https://doi.org/10.1016/j.scitotenv.2019.03.413.
  • Niyogi, D., Osuri, K. K., Busireddy, N., Nadimpalli, R., 2020. Timing of rainfall occurrence altered by urban sprawl. Urban Clim. 33, 100643. https://doi.org/10.1016/j.uclim.2020.100643.
  • Perkins, S. E., Alexander, L. V., Nairn, J. R., 2012. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, L20714. https://doi.org/10.1029/2012GL053361.
  • Pesaresi, M., Florczyk, A., Schiavina, M., Melchiorri, M., Maffenini, L., 2019. GHS settlement grid, updated and refined REGIO model 2014 in application to GHS-BUILT R2018A and GHS-POP R2019A, multitemporal (1975-1990-2000-2015), R2019A. European Commission, Joint Research Centre (JRC). http://doi.org/10.2905/42E8BE89-54FF-464E-BE7B-BF9E64DA5218.
  • Shimadera, H., Kondo, A., Shrestha, K. L., Kitaoka, K., Inoue, Y., 2015. Numerical evaluation of the impact of urbanization on summertime precipitation in Osaka, Japan. Advances in Meteorology 1-11, https://doi.org/10.1155/2015/379361.
  • Turkoglu, N., 2009. Analysis of urban effects on soil temperature in Ankara. Environmental Monitoring and Assessment, 169(1-4), 439-450. https://doi.org/10.1007/s10661-009-1187-z.
  • Unal, Y., Sonuc, C. Y., Incecik, S., Topcu, S., 2020. Investigating urban heat island intensity in Istanbul. Theor. Appl. Climatol. 139 (84), 175-190. https://doi.org/10.1007/s00704-019-02953-2.
  • Verdin, A., Funk, C., Peterson, P., Landsfeld, M., Tuholske, C., Grace, K., 2020. Development and validation of the CHIRTS-daily quasi-global high-resolution daily temperature data set. 7 (303). https://doi.org/10.1038/s41597-020-00643-7.
  • Wan, Z., Hook, S., Hulley, G., 2015. MOD11_L2 MODIS/Terra Land Surface Temperature/Emissivity 5-Min L2 Swath 1km V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD11_L2.006.
  • Yao, R., Zhang, S., Sun, P., Dai, Q., Yang, Q., 2022. Estimating the impact of urbanization on non-stationary models of extreme precipitation events in the Yangtze River Delta metropolitan region. Weather and Climate Extremes, 36, 100445. https://doi.org/10.1016/j.wace.2022.100445.
  • Zaeemdar, S., Baycan, T., 2017. Analysis of the relationship between urban heat island and land cover in Istanbul through Landsat 8 OLI. Journal of Earth Science & Climatic Change 8 (11). https://doi.org/10.4172/2157-7617.1000423.
  • Zhang, G., Azorin-Molina, C., Wang, X., Chen, D., McVicar, T. R., Guijarro, J. A., Chappell, A., Deng, K., Minola, L., Kong, F., Wang, S., Shi, P., 2022. Rapid urbanization induced daily maximum wind speed decline in metropolitan areas: A case study in the Yangtze River Delta (China). Urban Clim. 43, 101147. https://doi.org/10.1016/j.uclim.2022.101147.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Meteoroloji
Bölüm Araştırma Makalesi
Yazarlar

Kutay Dönmez

Berkay Dönmez

Cemre Yürük Sonuç 0000-0002-8585-1319

Yurdanur Unal

Yayımlanma Tarihi 3 Temmuz 2024
Gönderilme Tarihi 1 Mayıs 2024
Kabul Tarihi 22 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: 1

Kaynak Göster

APA Dönmez, K., Dönmez, B., Sonuç, C. Y., Unal, Y. (2024). İSTANBUL VE ANKARA’NIN SICAKLIK KAYITLARINDAKİ KENTSEL ETKİNİN DEĞERLENDİRİLMESİ: BİREYSEL OLARAK METROPOLLER KENTSELLEŞMEYE YANITTA NASIL FARKLILIK GÖSTEREBİLİR?. Atmosfer Ve İklim Dergisi, 1(1), 39-48.