Derleme
BibTex RIS Kaynak Göster

SU KAYNAKLARININ YÖNETİMİNDE UYDU ÜRÜNLERİNİN ROLÜ VE UYGULAMA ÖRNEKLERİ

Yıl 2024, Cilt: 1 Sayı: 1, 1 - 12, 03.07.2024

Öz

Uzaktan algılama ve uydu teknolojilerinde meydana gelen önemli ve hızlı ilerlemeler yeni ürünlerin geliştirilmesine olanak tanımakta ve bu ürünlerin farklı alanlarda kullanımını gündeme getirmektedir. Günümüzde uydu teknolojileri kullanarak hidrolojik döngünün neredeyse tüm elemanlarının doğrudan ve dolaylı ölçümlerini yapabilmektedir. Bu elemanlar arasında, yağış, toprak nemi, kar, su seviyeleri, evapotranspirasyon gibi önemli durum değişkenleri yer almaktadır. Özellikle yer ölçümlerinin çok zor koşullarda ve yüksek maliyetlerle gerçekleştirilebildiği noktalarda, uydu ürünlerinin kullanımı önemli avantajlar sağlamaktadır. Bu uydu ürünlerinin, su kaynaklarının planlanmasına, geliştirilmesine ve yönetilmesine yardımcı olmak üzere nehir akımlarının modellenmesinde doğrudan ya da dolaylı olarak kullanılması ve model performanslarını iyileştirmesi söz konusudur. Uzaktan algılama teknolojinin bir sonucu olarak elde edilen uydu ürünlerinden bazıları operasyonel olarak gelişme aşamasında olmasına rağmen, geniş kapsama alanları ve yüksek zamansal çözünürlükleri ile neredeyse gerçek zamanlı olarak ve küresel ölçekte veri sağlayabilmektedirler. Bu çalışmada, uydu teknolojisine dayalı yağış, kar ve toprak nemi verilerinin önemine ve gerekliliğine atıfla, su kaynakları alanında kullanılmasına dair uygulama örnekleri sunulmaktadır. Bu uygulamalar arasında, uydu ürünü olarak yağış, kar ve toprak nemi verilerinin, hidrolojik etki ve doğrulama çalışmalarında, kısa-uzun vade akım tahminlerinin modellenmesinde, modelleme yaklaşımlarının doğruluğunun arttırılıp belirsizliklerin azaltılmasında (model çoklu kalibrasyonunda, veri asimilasyonunda), taşkın ve kuraklık yönetim planlarında, iklim değişimi projeksiyonlarının ve senaryolarının oluşturulmasında, rezervuar yönetimi alanlarında kullanılması yer almaktadır. Çalışma özellikle yakın zamanda ülkemizde gerçekleştirilen uygulama örneklerini kapsamakta ve değerlendirmeleri içermektedir.

Kaynakça

  • Açıkyol, S. (2022) Uydu kar görüntülerinin doğrulanması, hidrolojik modelde uygulanması ve iklim değişikliği etkilerinin incelenmesi, Y.Lisans Tezi, Eskişehir Teknik Üniversitesi, Eskişehir, Türkiye.
  • Alvarado-Montero, R., Uysal, G., Collados-Lara, A. J., Şorman, A. A., Pulido-Velazquez, D., & Şensoy, A. (2022). Comparison of sequential and variational assimilation methods to improve hydrological predictions in snow dominated mountainous catchments. Journal of Hydrology, 612, 127981. https://doi.org/10.1016/j.jhydrol.2022.127981.
  • Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., . . . Prat, O. P. (2015). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1), 69-83. https://doi.org/10.1175/BAMS-D-13-00068.1.
  • Bergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments. SMHI, Reports RHO, No. 7, Norrköping.
  • Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., ... & Levizzani, V. (2014). Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research: Atmospheres, 119(9), 5128-5141. https://doi.org/10.1002/2014JD021489.
  • Doğan, Y.O. (2018) Çoruh Havzası'nda çok kriterli hidrolojik modelleme ve tahmin çalışması / Multi criteria hydrological modeling and forecasting study in Coruh basin, Y.Lisans Tezi, Anadolu Üniversitesi, Eskişehir, Türkiye. Doğan, Y. O., Şorman, A. A., & Şensoy, A. (2023). Multi-criteria evaluation for parameter uncertainty assessment and ensemble runoff forecasting in a snow-dominated basin. Journal of Hydrology and Hydromechanics, 71(3), 231-247. https://doi.org/10.2478/johh-2023-0003.
  • González, E. A., Moreno, J. I., Ertaş, M. C., Şensoy, A., & Şorman, A. A. (2023). A performance assessment of gridded snow products in the Upper Euphrates. Cuadernos de Investigación Geográfica: Geographical Research Letters, 49(1), 55-68. https://doi.org/10.18172/cig.5275.
  • Dong, C. (2018). Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. Journal of Hydrology, 561, 573-583. https://doi.org/10.1016/j.jhydrol.2018.04.027.
  • Ertaş, M.C. (2018) Yukarı Fırat Havzası'nda kar bileşenlerinin ölçülmesi, doğrulanması ve modellenmesi, Doktora Tezi, Eskişehir Teknik Üniversitesi, Eskişehir, Türkiye.
  • Hafizi, H., & Sorman, A. A. (2023). Performance assessment of multi-source, satellite-based and reanalysis precipitation products over variable climate of Turkey. Theoretical and Applied Climatology, 153(3), 1341-1354. https://doi.org/10.1007/s00704-023-04538-6.
  • Hafizi, H., & Sorman, A. A. (2022). Assessment of 13 gridded precipitation datasets for hydrological modeling in a mountainous basin. Atmosphere, 13(1), 143. https://doi.org/10.3390/atmos13010143.
  • Jaber, A. S. (2020). Evaluating SM2RAIN and WRF reanalysis precipitation datasets over Turkey and hydrological model application (Yüksek Lisans Tezi, Eskişehir Teknik Üniversitesi).
  • Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2017). So, how much of the Earth’s surface is covered by rain gauges? Bulletin of the American Meteorological Society, 98(1), 69-78. https://doi.org/10.1175/BAMS-D-14-00283.1.
  • Koohi, S., Azizian, A., & Brocca, L. (2021). Spatiotemporal drought monitoring using bottom-up precipitation dataset (SM2RAIN-ASCAT) over different regions of Iran. Science of the Total Environment, 779, 146535. https://doi.org/10.1016/j.scitotenv.2021.146535.
  • Lai, Y., Tian, J., Kang, W., Gao, C., Hong, W., & He, C. (2022). Rainfall estimation from surface soil moisture using SM2RAIN in cold mountainous areas. Journal of Hydrology, 606, 127430. https://doi.org/10.1016/j.jhydrol.2022.127430.
  • Liu, X., Yang, T., Hsu, K., Liu, C., & Sorooshian, S. (2017). Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrology and Earth System Sciences, 21(1), 169-181. https://doi.org/10.5194/hess-21-169-2017.
  • Martinec, J. (1975). Snowmelt-runoff model for stream flow forecasts. Hydrology Research, 6(3), 145-154. https://doi.org/10.2166/nh.1975.0010.
  • Peker, I. B., & Sorman, A. A. (2021). Application of SWAT using snow data and detecting climate change impacts in the mountainous eastern regions of Turkey. Water, 13(14), 1982. https://doi.org/10.3390/w13141982.
  • Puca, S., Porcu, F., Rinollo, A., Vulpiani, G., Baguis, P., Balabanova, S., ... & Gattari, F. (2014). The validation service of the hydrological SAF geostationary and polar satellite precipitation products. Natural hazards and earth system sciences, 14(4), 871-889. https://doi.org/10.5194/nhess-14-871-2014.
  • Pradhan, A., & Indu, J. (2021). Assessment of SM2RAIN derived and IMERG based precipitation products for hydrological simulation. Journal of Hydrology, 603, 127191. https://doi.org/10.1016/j.jhydrol.2021.127191.
  • Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1), 79-107. https://doi.org/10.1002/2017RG000574.
  • Şensoy, A., Uysal, G., & Şorman, A. A. (2023). Assessment of H SAF satellite snow products in hydrological applications over the Upper Euphrates Basin. Theoretical and Applied Climatology, 151(1), 535-551. https://doi.org/10.1007/s00704-022-04292-1.
  • Şensoy, A., Uysal, G., Doğan, Y. O., & Civelek, H. S. (2023). The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower. Sustainability, 15(8), 6646. https://doi.org/10.3390/su15086646.
  • Şorman, A. A., Uysal, G., & Şensoy, A. (2019). Probabilistic snow cover and ensemble streamflow estimations in the Upper Euphrates Basin. Journal of Hydrology and Hydromechanics, 67(1), 82-92. https://doi.org/10.2478/johh-2018-0025.
  • URL-1: https://blogs.egu.eu/divisions/hs/2020/10/28/water-towers-of-mesopotamia/, 30 Mart 2024 tarihinde ulaşıldı.
  • URL-2: https://hsaf.meteoam.it/, 30 Mart 2024 tarihinde ulaşıldı.
  • URL-3: https://harmosnow.eu/, 30 Mart 2024 tarihinde ulaşıldı.
  • USACE. (2018). Hydrologic Modeling System (HEC-HMS) User's Manual: Version 4.3.0. CA, USA: Hydrologic Engineering Center: Davis
  • Uysal, G., & Şorman, A. Ü. (2021). Evaluation of PERSIANN family remote sensing precipitation products for snowmelt runoff estimation in a mountainous basin. Hydrological Sciences Journal, 66(12), 1790-1807. https://doi.org/10.1080/02626667.2021.1954651.
  • Uysal, G., Şensoy, A., & Şorman, A. A. (2016). Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products. Journal of Hydrology, 543, 630-650. https://doi.org/10.1016/j.jhydrol.2016.10.037.
  • Yılmaz, M., Amjad, M., Bulut, B., Yılmaz, M. T. Uydu Kaynaklı Yağmur Verilerinin Hata Oranlarının Deniz Kıyılarına Olan Uzaklığa Bağlı Analizi. Teknik Dergi, 28(3), 7993-8005. https://doi.org/10.18400/tekderg.306970.

THE ROLE OF SATELLITE PRODUCTS IN WATER RESOURCES MANAGEMENT AND APPLICATION EXAMPLES

Yıl 2024, Cilt: 1 Sayı: 1, 1 - 12, 03.07.2024

Öz

Significant and rapid advances in remote sensing and satellite technologies enable the development of new products and bring to the agenda the use of these products in different areas. Today, direct and indirect measurements of almost all elements of the hydrological cycle can be made using satellite technologies. These elements include important situation variables such as precipitation, soil moisture, snow, water levels and evapotranspiration. The use of satellite products provides significant advantages, especially at points where ground measurements can be carried out under very difficult conditions and at high costs. These satellite products can be used directly or indirectly in modeling river flows and improving model performances to help plan, develop and manage water resources. Although some of the satellite products obtained as a result of remote sensing technology are in the operational development stage, they can provide data in almost real time and on a global scale with their wide coverage areas and high temporal resolution. In this study, application examples of its use in the field of water resources are presented, referring to the importance and necessity of satellite technology-based rainfall, snow and soil moisture data. Among these applications, satellite product rainfall, snow and soil moisture data are used in hydrological impact and verification studies, modeling of short-long term flow forecasts, increasing the accuracy of modeling approaches and reducing uncertainties (model multiple calibration, data assimilation), flood and drought management plans, it is used in creating climate change projections and scenarios and in reservoir management areas. The study covers application examples and evaluations that have been recently implemented in our country.

Kaynakça

  • Açıkyol, S. (2022) Uydu kar görüntülerinin doğrulanması, hidrolojik modelde uygulanması ve iklim değişikliği etkilerinin incelenmesi, Y.Lisans Tezi, Eskişehir Teknik Üniversitesi, Eskişehir, Türkiye.
  • Alvarado-Montero, R., Uysal, G., Collados-Lara, A. J., Şorman, A. A., Pulido-Velazquez, D., & Şensoy, A. (2022). Comparison of sequential and variational assimilation methods to improve hydrological predictions in snow dominated mountainous catchments. Journal of Hydrology, 612, 127981. https://doi.org/10.1016/j.jhydrol.2022.127981.
  • Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., . . . Prat, O. P. (2015). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1), 69-83. https://doi.org/10.1175/BAMS-D-13-00068.1.
  • Bergström, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments. SMHI, Reports RHO, No. 7, Norrköping.
  • Brocca, L., Ciabatta, L., Massari, C., Moramarco, T., Hahn, S., Hasenauer, S., ... & Levizzani, V. (2014). Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. Journal of Geophysical Research: Atmospheres, 119(9), 5128-5141. https://doi.org/10.1002/2014JD021489.
  • Doğan, Y.O. (2018) Çoruh Havzası'nda çok kriterli hidrolojik modelleme ve tahmin çalışması / Multi criteria hydrological modeling and forecasting study in Coruh basin, Y.Lisans Tezi, Anadolu Üniversitesi, Eskişehir, Türkiye. Doğan, Y. O., Şorman, A. A., & Şensoy, A. (2023). Multi-criteria evaluation for parameter uncertainty assessment and ensemble runoff forecasting in a snow-dominated basin. Journal of Hydrology and Hydromechanics, 71(3), 231-247. https://doi.org/10.2478/johh-2023-0003.
  • González, E. A., Moreno, J. I., Ertaş, M. C., Şensoy, A., & Şorman, A. A. (2023). A performance assessment of gridded snow products in the Upper Euphrates. Cuadernos de Investigación Geográfica: Geographical Research Letters, 49(1), 55-68. https://doi.org/10.18172/cig.5275.
  • Dong, C. (2018). Remote sensing, hydrological modeling and in situ observations in snow cover research: A review. Journal of Hydrology, 561, 573-583. https://doi.org/10.1016/j.jhydrol.2018.04.027.
  • Ertaş, M.C. (2018) Yukarı Fırat Havzası'nda kar bileşenlerinin ölçülmesi, doğrulanması ve modellenmesi, Doktora Tezi, Eskişehir Teknik Üniversitesi, Eskişehir, Türkiye.
  • Hafizi, H., & Sorman, A. A. (2023). Performance assessment of multi-source, satellite-based and reanalysis precipitation products over variable climate of Turkey. Theoretical and Applied Climatology, 153(3), 1341-1354. https://doi.org/10.1007/s00704-023-04538-6.
  • Hafizi, H., & Sorman, A. A. (2022). Assessment of 13 gridded precipitation datasets for hydrological modeling in a mountainous basin. Atmosphere, 13(1), 143. https://doi.org/10.3390/atmos13010143.
  • Jaber, A. S. (2020). Evaluating SM2RAIN and WRF reanalysis precipitation datasets over Turkey and hydrological model application (Yüksek Lisans Tezi, Eskişehir Teknik Üniversitesi).
  • Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2017). So, how much of the Earth’s surface is covered by rain gauges? Bulletin of the American Meteorological Society, 98(1), 69-78. https://doi.org/10.1175/BAMS-D-14-00283.1.
  • Koohi, S., Azizian, A., & Brocca, L. (2021). Spatiotemporal drought monitoring using bottom-up precipitation dataset (SM2RAIN-ASCAT) over different regions of Iran. Science of the Total Environment, 779, 146535. https://doi.org/10.1016/j.scitotenv.2021.146535.
  • Lai, Y., Tian, J., Kang, W., Gao, C., Hong, W., & He, C. (2022). Rainfall estimation from surface soil moisture using SM2RAIN in cold mountainous areas. Journal of Hydrology, 606, 127430. https://doi.org/10.1016/j.jhydrol.2022.127430.
  • Liu, X., Yang, T., Hsu, K., Liu, C., & Sorooshian, S. (2017). Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau. Hydrology and Earth System Sciences, 21(1), 169-181. https://doi.org/10.5194/hess-21-169-2017.
  • Martinec, J. (1975). Snowmelt-runoff model for stream flow forecasts. Hydrology Research, 6(3), 145-154. https://doi.org/10.2166/nh.1975.0010.
  • Peker, I. B., & Sorman, A. A. (2021). Application of SWAT using snow data and detecting climate change impacts in the mountainous eastern regions of Turkey. Water, 13(14), 1982. https://doi.org/10.3390/w13141982.
  • Puca, S., Porcu, F., Rinollo, A., Vulpiani, G., Baguis, P., Balabanova, S., ... & Gattari, F. (2014). The validation service of the hydrological SAF geostationary and polar satellite precipitation products. Natural hazards and earth system sciences, 14(4), 871-889. https://doi.org/10.5194/nhess-14-871-2014.
  • Pradhan, A., & Indu, J. (2021). Assessment of SM2RAIN derived and IMERG based precipitation products for hydrological simulation. Journal of Hydrology, 603, 127191. https://doi.org/10.1016/j.jhydrol.2021.127191.
  • Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1), 79-107. https://doi.org/10.1002/2017RG000574.
  • Şensoy, A., Uysal, G., & Şorman, A. A. (2023). Assessment of H SAF satellite snow products in hydrological applications over the Upper Euphrates Basin. Theoretical and Applied Climatology, 151(1), 535-551. https://doi.org/10.1007/s00704-022-04292-1.
  • Şensoy, A., Uysal, G., Doğan, Y. O., & Civelek, H. S. (2023). The Future Snow Potential and Snowmelt Runoff of Mesopotamian Water Tower. Sustainability, 15(8), 6646. https://doi.org/10.3390/su15086646.
  • Şorman, A. A., Uysal, G., & Şensoy, A. (2019). Probabilistic snow cover and ensemble streamflow estimations in the Upper Euphrates Basin. Journal of Hydrology and Hydromechanics, 67(1), 82-92. https://doi.org/10.2478/johh-2018-0025.
  • URL-1: https://blogs.egu.eu/divisions/hs/2020/10/28/water-towers-of-mesopotamia/, 30 Mart 2024 tarihinde ulaşıldı.
  • URL-2: https://hsaf.meteoam.it/, 30 Mart 2024 tarihinde ulaşıldı.
  • URL-3: https://harmosnow.eu/, 30 Mart 2024 tarihinde ulaşıldı.
  • USACE. (2018). Hydrologic Modeling System (HEC-HMS) User's Manual: Version 4.3.0. CA, USA: Hydrologic Engineering Center: Davis
  • Uysal, G., & Şorman, A. Ü. (2021). Evaluation of PERSIANN family remote sensing precipitation products for snowmelt runoff estimation in a mountainous basin. Hydrological Sciences Journal, 66(12), 1790-1807. https://doi.org/10.1080/02626667.2021.1954651.
  • Uysal, G., Şensoy, A., & Şorman, A. A. (2016). Improving daily streamflow forecasts in mountainous Upper Euphrates basin by multi-layer perceptron model with satellite snow products. Journal of Hydrology, 543, 630-650. https://doi.org/10.1016/j.jhydrol.2016.10.037.
  • Yılmaz, M., Amjad, M., Bulut, B., Yılmaz, M. T. Uydu Kaynaklı Yağmur Verilerinin Hata Oranlarının Deniz Kıyılarına Olan Uzaklığa Bağlı Analizi. Teknik Dergi, 28(3), 7993-8005. https://doi.org/10.18400/tekderg.306970.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Su Kaynakları ve Su Yapıları
Bölüm Derlemeler
Yazarlar

Aynur Sensoy 0000-0003-3004-4912

Gökçen Uysal 0000-0003-0445-060X

Arda Şorman 0000-0003-3143-7793

Yayımlanma Tarihi 3 Temmuz 2024
Gönderilme Tarihi 3 Nisan 2024
Kabul Tarihi 31 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: 1

Kaynak Göster

APA Sensoy, A., Uysal, G., & Şorman, A. (2024). SU KAYNAKLARININ YÖNETİMİNDE UYDU ÜRÜNLERİNİN ROLÜ VE UYGULAMA ÖRNEKLERİ. Atmosfer Ve İklim Dergisi, 1(1), 1-12.