BibTex RIS Cite

MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL

Year 2013, Volume: 14 Issue: 1, 47 - 54, 03.10.2013

Abstract

Categorical time series data with random time dependent covariates often arise when the variable categories are assigned as categorical. There are several other models that have been proposed in the literature for the analysis of categorical time series. For example, Markov chain models, integer autoregressive processes, discrete ARMA models can be utilized for modeling of categorical time series. In general, the choice of model depends on the measurement of study variables: nominal, ordinal and interval. However, regression theory is successful approach for categorical time series which is based on generalized linear models and partial likelihood inference. One of the models for ordinal time series in regression theory is proportional odds model. In this study, proportional odds model approach to ordinal categorical time series is investigated based on a real air pollution data set and the results are discussed.

References

  • Agresti, A. (2002). Categorical Data Analysis, 2nd ed., New Jersey:John Wiley.
  • Bru, N., Despres, L. and Paroissin, C.A. Com- parison of Statistical Models for Short Categorical or Ordinal Time Series with Applications gy,arxiv.math/0702706v1. in Ecolo
  • Fokianos, K. and Kedem, B. (2003). Regression Theory for Categorical Time Series, Sta- tistical Science. 18, 3, 357-376.
  • Jacobs, P. and Lewis, P. (1978). Discrete Time Series Generated by Mixtures i: Correla- tion and Runs Properties, Journal of The Royal Statistical Society (Series B), 40(1), 94-105.
  • Liu, L. and Agresti, A. (2005). The Analysis of Ordered Categorical data: An Overview and A Survey of Recent Developments, Sociedad de Estadıstica e Investigacion Operativa Test, 14, 1-73.
  • McCullagh, P. (1980). Regression Models for Ordinal Data, Journal of the Royal Statis- tical Society - Series B 42, 109-142.
  • McCullagh, P. (2005). The proportional Odds model, The Encyclopedia of Biostatistics (Editor: Armitage, P., Colton, T.), Wiley, NewYork.
  • SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.
  • www.havaizleme.gov.tr 09/08/2011) (Erişim Tarihi

SIRALI ZAMAN SERİSİ VERİLERİNİN ORANTILI ODDS MODELİ İLE MODELLENMESİ

Year 2013, Volume: 14 Issue: 1, 47 - 54, 03.10.2013

Abstract

Zamana bağlı açıklayıcı değişkenlere sahip kategorik zaman serileri, bağımlı değişken kategorik olduğu durumda ortaya çıkar. Kategorik zaman serileri analizi için litaratürde bir çok yöntem önerilmiştir, bunlardan bazıları Markov zincirleri modeli, tamsayılı otoregresif süreçler, kesikli ARMA modeli gibi yöntemlerdir. Genellikle modelin seçimi, ilgilenilen değişkenin sınıflayıcı, sıralı veya aralıklı ölçümüne bağlıdır. Bununla birlikte, kategorik zaman serileri analizi için genel doğrusal modellere dayalı ve kısmi olabilirlik çıkarımlı regresyon teorisi başarılı bir yaklaşımdır. Regresyon teorisinde sıralı zaman serisi modellerinden biri orantılı odds modeldir. Bu çalışmada, sıralı kategorik zaman serisi modeli için orantılı odds modeli tanıtılmış ve gerçek hava kalitesi veri kümesi üzerinde uygulama yapılarak sonuçlar tartışılmıştır

References

  • Agresti, A. (2002). Categorical Data Analysis, 2nd ed., New Jersey:John Wiley.
  • Bru, N., Despres, L. and Paroissin, C.A. Com- parison of Statistical Models for Short Categorical or Ordinal Time Series with Applications gy,arxiv.math/0702706v1. in Ecolo
  • Fokianos, K. and Kedem, B. (2003). Regression Theory for Categorical Time Series, Sta- tistical Science. 18, 3, 357-376.
  • Jacobs, P. and Lewis, P. (1978). Discrete Time Series Generated by Mixtures i: Correla- tion and Runs Properties, Journal of The Royal Statistical Society (Series B), 40(1), 94-105.
  • Liu, L. and Agresti, A. (2005). The Analysis of Ordered Categorical data: An Overview and A Survey of Recent Developments, Sociedad de Estadıstica e Investigacion Operativa Test, 14, 1-73.
  • McCullagh, P. (1980). Regression Models for Ordinal Data, Journal of the Royal Statis- tical Society - Series B 42, 109-142.
  • McCullagh, P. (2005). The proportional Odds model, The Encyclopedia of Biostatistics (Editor: Armitage, P., Colton, T.), Wiley, NewYork.
  • SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.
  • www.havaizleme.gov.tr 09/08/2011) (Erişim Tarihi
There are 9 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Esra Satıcı

Serpil Aktaş Altunay This is me

Publication Date October 3, 2013
Published in Issue Year 2013 Volume: 14 Issue: 1

Cite

APA Satıcı, E., & Aktaş Altunay, S. (2013). MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 14(1), 47-54.
AMA Satıcı E, Aktaş Altunay S. MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL. AUJST-A. October 2013;14(1):47-54.
Chicago Satıcı, Esra, and Serpil Aktaş Altunay. “MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 14, no. 1 (October 2013): 47-54.
EndNote Satıcı E, Aktaş Altunay S (October 1, 2013) MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 14 1 47–54.
IEEE E. Satıcı and S. Aktaş Altunay, “MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL”, AUJST-A, vol. 14, no. 1, pp. 47–54, 2013.
ISNAD Satıcı, Esra - Aktaş Altunay, Serpil. “MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 14/1 (October 2013), 47-54.
JAMA Satıcı E, Aktaş Altunay S. MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL. AUJST-A. 2013;14:47–54.
MLA Satıcı, Esra and Serpil Aktaş Altunay. “MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, vol. 14, no. 1, 2013, pp. 47-54.
Vancouver Satıcı E, Aktaş Altunay S. MODELLING OF ORDINAL TIME SERIES BY PROPORTIONAL ODDS MODEL. AUJST-A. 2013;14(1):47-54.