Categorical time series data with random time dependent covariates often arise when the variable categories are assigned as categorical. There are several other models that have been proposed in the literature for the analysis of categorical time series. For example, Markov chain models, integer autoregressive processes, discrete ARMA models can be utilized for modeling of categorical time series. In general, the choice of model depends on the measurement of study variables: nominal, ordinal and interval. However, regression theory is successful approach for categorical time series which is based on generalized linear models and partial likelihood inference. One of the models for ordinal time series in regression theory is proportional odds model. In this study, proportional odds model approach to ordinal categorical time series is investigated based on a real air pollution data set and the results are discussed.
Zamana bağlı açıklayıcı değişkenlere sahip kategorik zaman serileri, bağımlı değişken kategorik olduğu durumda ortaya çıkar. Kategorik zaman serileri analizi için litaratürde bir çok yöntem önerilmiştir, bunlardan bazıları Markov zincirleri modeli, tamsayılı otoregresif süreçler, kesikli ARMA modeli gibi yöntemlerdir. Genellikle modelin seçimi, ilgilenilen değişkenin sınıflayıcı, sıralı veya aralıklı ölçümüne bağlıdır. Bununla birlikte, kategorik zaman serileri analizi için genel doğrusal modellere dayalı ve kısmi olabilirlik çıkarımlı regresyon teorisi başarılı bir yaklaşımdır. Regresyon teorisinde sıralı zaman serisi modellerinden biri orantılı odds modeldir. Bu çalışmada, sıralı kategorik zaman serisi modeli için orantılı odds modeli tanıtılmış ve gerçek hava kalitesi veri kümesi üzerinde uygulama yapılarak sonuçlar tartışılmıştır
Primary Language | English |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | October 3, 2013 |
Published in Issue | Year 2013 Volume: 14 Issue: 1 |