Araştırma Makalesi
BibTex RIS Kaynak Göster

Tip 2 Diyabet Modeli Ratların Karaciğer Dokularında Kodlanan Genlerin İfade Düzeyleri

Yıl 2021, Cilt: 10 Sayı: 1, 25 - 34, 30.06.2021
https://doi.org/10.46971/ausbid.875579

Öz

Amaç: Obezite ve tip 2 diyabet çevresel ve genetik faktörlerin bir araya gelerek meydana getirdiği multifaktöriyel bir durumdur. Yaptığımız çalışmada yüksek yağlı diyet ve Streptozotosin (STZ) ile tip 2 diyabet modeli oluşturduğumuz ratlarda, daha önce yapılan çalışmalarda tip 2 diyabet ve obezite için aday gen olarak belirlenen ve karaciğer dokusunda eksprese olan, HNF4A, LMNA, WFS1, ADAMTS9 genlerinin mRNA düzeylerini incelemeyi hedefledik.
Gereç ve Yöntem: Ratlara, 20 hafta yüksek yağlı diyet (%50 iç yağı ), tek doz intraperitonal STZ enjeksiyonu, insülin tolerans testi uyguladık. Tüm ratlar 20. Hafta sonunda sakrifiye edildi ve moleküler analizler için karaciğer dokusu izole edildi. Real-time PCR ile tüm gruplarda HNF4A, LMNA, WFS1, ADAMTS9 genlerinin ekspresyon seviyeleri karşılaştırıldı.
Bulgular: Çalışma sonuçlarımıza göre HNF4A, LMNA, WFS1, ADAMTS9 mRNA ekspresyon seviyeleri tip 2 diyabet ve obezite modeli ratlarda kontrol grubuna kıyasla daha düşük bulunmuştur. Sonuç: Tip 2 diyabet ve obezite patofizyolojisinin altında yatan moleküler mekanizmaların anlaşılmasına katkıda bulunan çalışmamız, terapötik yaklaşımda, potansiyel yeni biyomarkırlar olarak HNF4A, LMNA, WSF1, ADAMTS9’un değerlendirilebileceğine işaret etmektedir.

Destekleyen Kurum

Çalışmamız Çukurova Üniversitesi Bilimsel Araştırma Projeleri Birimince TSA-2017-9090 no’lu proje olarak desteklenmiştir.

Proje Numarası

TSA-2017-9090 no’lu proje

Teşekkür

Çalışmamız Çukurova Üniversitesi Bilimsel Araştırma Projeleri Birimince TSA-2017-9090 no’lu proje olarak desteklenmiştir. Bilimsel Araştırma Projeleri Birimine, desteklediklerinden dolayı teşekkür ederiz.

Kaynakça

  • American Diabetes Association. (2010). Diagnosis and Classification of Diabetes Mellitus 33(1), 62-69.
  • Amerıcan Diabetes Association. (2018). Standards of medical care in diabetes. Diabetes Care, 41(1).
  • Ajluni, N., Meral, R., Neidert, A. H., Brady, G. F., Buras, E., McKenna, B., Di Paola, F., Chenevert,T.L.et.al.(2017). Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol (Oxf), 86, 698-707.
  • Arya, V. B., Rahman, S., Senniappan, S., Flanagan, S. E., Ellard, S., Hussain, K. (2014). HNF4A mutation: switch from hyperinsulinaemic hypoglycaemia to maturity onset diabetes of the young, and incretin response. Diabet Med, 31, 11-5.
  • Chomczynski, P., Mackey, K. (1995). Modification of the TRIZOL reagent procedure for isolation of RNA from Polysaccharide-and proteoglycan-rich sources. Biotechniques Short technical report, 9(6), 942-945.
  • Dou, L., Wang, S., Sun, L., Huang, X., Zhang, Y., Shen, T., Guo, J., Man, Y., Tang, W., Li, J. (2017). Mir-338-3p Mediates Tnf-A-Induced Hepatic Insulin Resistance by Targeting PP4r1 to Regulate PP4 Expression. Cell Physiol Biochem, 41(6), 2419-2431.
  • Furnes, M. W., Zhao, C. M., Chen, D. (2009). Development of Obesity is Associated with Increased Calories per Meal Rather than per Day. A Study of High-Fat Diet-Induced Obesity in Young Rats, Obes Surg, 19, 1430–1438.
  • Gloyn, A. L., Tribble N. D., van de Bunt, M., Barrett, A., Johnson, P. R. (2008). Glucokinase (GCK) and other susceptibility genes for beta-cell dysfunction: the candidate approach, 36, 306-11.
  • Graae, A. S., Grarup, N., Ribel-Madsen, R., Lystbæk, S. H., Boesgaard, T., Staiger, H. (2019). ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 68(3), 502-514.
  • Greenawalt, D. M., Sieberts, S. K., Cornelis, M. C., Girman, C. J., Zhong, H., Yang, X., Guinney, J., Qi, L., Hu, F. B. (2012). Integrating genetic association, genetics of gene expression, and single nucleotide polymorphism set analysis to identify susceptibility Loci for type 2 diabetes mellitus Am J Epidemiol, 176(5), 423-30.
  • Hazman, Ö. (2011). Oral Antidiyabetik İlaç Sitagliptin’in Oksidan-Antioksidan Denge Üzerine Etkisinin Deneysel Tip 2 Diyabet Modeli Oluşturulan Ratlarda Araştırılması. Yayınlanmış doktora tezi, Afyon Kocatepe Üniversitesi, Afyon.
  • Ingelsson, E., McCarthy, M. I. (2018) Human Genetics of Obesity and Type 2 Diabetes Mellitus: Past, Present, and Future. Circ Genom Precis Med, 11(6), e002090.
  • International Diabetes Federation. (2019). IDF Diabetes Atlas 9th ed. https://www.diabetesatlas.org/en/.
  • İnsilin Tolerans Testi Nasıl Yapılır. (2013, Nisan). https://www.sanalicerik.com/insulin-tolerans-testi-nedir-nasil-yapilir/
  • Javeed, N., Matveyenko, A. V. (2018). Circadian Etiology of Type 2 Diabetes Mellitus. Physiology, 33(2), 138-150.
  • Kamenov, Z., Higashino, H., Todorova, M., Kajimoto, N., Suzuki, A. (2006). Physiological characteristics of diabetic neuropathy in sucrose fed Otsuka Long-Evans Tokushima fatty rats. Methods Find Exp Clin Pharmacol, 28(1), 13-8.
  • Kerékgyártó, M., Németh, N., Kerekes, T., Rónai, Z., Guttman, A. (2013). Ultrafast haplotyping of putative microRNA-binding sites in the WFS1 gene by multiplex polymerase chain reaction and capillary gel electrophoresis. J Chromatogr A, 1286, 229-34.
  • Matthews, D. R, Hosker, J. P., Rudenskı, A. S., Naylor, B. A., Treacher, D. F., Turner R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia, 28, 412-419.
  • Miranda, M., Chacón, M. R., Gutiérrez, C., Vilarrasa, N., Gómez, J. M., Caubet, E., Megía, A., Vendrell, J. (2008). LMNA mRNA expression is altered in human obesity and type 2 diabetes. Obesity (Silver Spring), 16(8), 1742-8.
  • Petersen, M. C., Shulman, G. I. (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev, 98(4), 2133–2223.
  • Reed, M. J., Meszaros, K., Entes, L. J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M., Reaven, G. M. (2000). A new rat model of type 2 diabetes: The fatfed, streptozotocin-treated rat. Metabolism, 49(11), 1390-4.
  • Rhee, E. J. (2019). Nonalcoholic Fatty Liver Disease and Diabetes: An Epidemiological Perspective. Endocrinol Metab (Seoul), 34(3), 226–233.
  • Schäfer, S. A., Müssig, K., Staiger, H., Machicao, F., Stefan, N., Gallwitz, B., Häring, H. U., Fritsche, A. (2009). A common genetic variant in WFS1 determines impaired glucagon-like peptide-1-induced insulin secretion. Diabetologia, 52(6), 1075-82.
  • Vimaleswaran, K. S., Loos, R. J. (2010). Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med, 12, 7.
  • Winters, S. J., Gogineni, J., Karegar, M., Scoggins, C., Wunderlich, C. A., Baumgartner R., Ghooray, D. T. (2014). Sex hormone-binding globulin gene expression and insulin resistance. J Clin Endocrinol Metab, 99(12), E2780-8.
  • Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., et al. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature genetics, 40, 638-45.

Levels of Genes Encoded in Type 2 Diabetes Model Rat Liver Tissues

Yıl 2021, Cilt: 10 Sayı: 1, 25 - 34, 30.06.2021
https://doi.org/10.46971/ausbid.875579

Öz

Aim: Obesity and type 2 diabetes are a multifactorial condition caused by environmental and genetic factors.In this study, we aimed to do examine the mRNA levels of HNF4A, LMNA, WFS1, ADAMTS9 genes, which were identified as candidate genes for type 2 diabetes and obesity in previous studies and expressed in liver tissue, in rats created with a type 2 diabetes model with high fat diet and Streptozotocin (STZ). Subject and Method: Rats were given with high-fat diet (involved %50 fat) for 20 weeks received of STZ (40mg/ml) single dose with intraperitoneal injection and insulin tolerance test were carried out. All of rats were sacrificed at the end of 16 weeks and livers were removed for molecular analysis. Real Time PCR was performed to compare the expression levels ofHNF4A, LMNA, WSF1 and ADAMTS9 genes in groups. Results: According to the results of to the study, HNF4A, LMNA, WFS1, ADAMTS9 mRNA expression levels were found to be lower in type 2 diabetes and obesity model rats compared to the control group. Conclusion: This study, which contributes to the understanding of the molecular mechanisms
underlying the pathophysiology of type 2 diabetes and obesity, points out that HNF4A, LMNA, WSF1, ADAMTS9
can be evaluated as potential new biomarkers in the therapeutic approach.

Proje Numarası

TSA-2017-9090 no’lu proje

Kaynakça

  • American Diabetes Association. (2010). Diagnosis and Classification of Diabetes Mellitus 33(1), 62-69.
  • Amerıcan Diabetes Association. (2018). Standards of medical care in diabetes. Diabetes Care, 41(1).
  • Ajluni, N., Meral, R., Neidert, A. H., Brady, G. F., Buras, E., McKenna, B., Di Paola, F., Chenevert,T.L.et.al.(2017). Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol (Oxf), 86, 698-707.
  • Arya, V. B., Rahman, S., Senniappan, S., Flanagan, S. E., Ellard, S., Hussain, K. (2014). HNF4A mutation: switch from hyperinsulinaemic hypoglycaemia to maturity onset diabetes of the young, and incretin response. Diabet Med, 31, 11-5.
  • Chomczynski, P., Mackey, K. (1995). Modification of the TRIZOL reagent procedure for isolation of RNA from Polysaccharide-and proteoglycan-rich sources. Biotechniques Short technical report, 9(6), 942-945.
  • Dou, L., Wang, S., Sun, L., Huang, X., Zhang, Y., Shen, T., Guo, J., Man, Y., Tang, W., Li, J. (2017). Mir-338-3p Mediates Tnf-A-Induced Hepatic Insulin Resistance by Targeting PP4r1 to Regulate PP4 Expression. Cell Physiol Biochem, 41(6), 2419-2431.
  • Furnes, M. W., Zhao, C. M., Chen, D. (2009). Development of Obesity is Associated with Increased Calories per Meal Rather than per Day. A Study of High-Fat Diet-Induced Obesity in Young Rats, Obes Surg, 19, 1430–1438.
  • Gloyn, A. L., Tribble N. D., van de Bunt, M., Barrett, A., Johnson, P. R. (2008). Glucokinase (GCK) and other susceptibility genes for beta-cell dysfunction: the candidate approach, 36, 306-11.
  • Graae, A. S., Grarup, N., Ribel-Madsen, R., Lystbæk, S. H., Boesgaard, T., Staiger, H. (2019). ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes, 68(3), 502-514.
  • Greenawalt, D. M., Sieberts, S. K., Cornelis, M. C., Girman, C. J., Zhong, H., Yang, X., Guinney, J., Qi, L., Hu, F. B. (2012). Integrating genetic association, genetics of gene expression, and single nucleotide polymorphism set analysis to identify susceptibility Loci for type 2 diabetes mellitus Am J Epidemiol, 176(5), 423-30.
  • Hazman, Ö. (2011). Oral Antidiyabetik İlaç Sitagliptin’in Oksidan-Antioksidan Denge Üzerine Etkisinin Deneysel Tip 2 Diyabet Modeli Oluşturulan Ratlarda Araştırılması. Yayınlanmış doktora tezi, Afyon Kocatepe Üniversitesi, Afyon.
  • Ingelsson, E., McCarthy, M. I. (2018) Human Genetics of Obesity and Type 2 Diabetes Mellitus: Past, Present, and Future. Circ Genom Precis Med, 11(6), e002090.
  • International Diabetes Federation. (2019). IDF Diabetes Atlas 9th ed. https://www.diabetesatlas.org/en/.
  • İnsilin Tolerans Testi Nasıl Yapılır. (2013, Nisan). https://www.sanalicerik.com/insulin-tolerans-testi-nedir-nasil-yapilir/
  • Javeed, N., Matveyenko, A. V. (2018). Circadian Etiology of Type 2 Diabetes Mellitus. Physiology, 33(2), 138-150.
  • Kamenov, Z., Higashino, H., Todorova, M., Kajimoto, N., Suzuki, A. (2006). Physiological characteristics of diabetic neuropathy in sucrose fed Otsuka Long-Evans Tokushima fatty rats. Methods Find Exp Clin Pharmacol, 28(1), 13-8.
  • Kerékgyártó, M., Németh, N., Kerekes, T., Rónai, Z., Guttman, A. (2013). Ultrafast haplotyping of putative microRNA-binding sites in the WFS1 gene by multiplex polymerase chain reaction and capillary gel electrophoresis. J Chromatogr A, 1286, 229-34.
  • Matthews, D. R, Hosker, J. P., Rudenskı, A. S., Naylor, B. A., Treacher, D. F., Turner R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man, Diabetologia, 28, 412-419.
  • Miranda, M., Chacón, M. R., Gutiérrez, C., Vilarrasa, N., Gómez, J. M., Caubet, E., Megía, A., Vendrell, J. (2008). LMNA mRNA expression is altered in human obesity and type 2 diabetes. Obesity (Silver Spring), 16(8), 1742-8.
  • Petersen, M. C., Shulman, G. I. (2018) Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev, 98(4), 2133–2223.
  • Reed, M. J., Meszaros, K., Entes, L. J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M., Reaven, G. M. (2000). A new rat model of type 2 diabetes: The fatfed, streptozotocin-treated rat. Metabolism, 49(11), 1390-4.
  • Rhee, E. J. (2019). Nonalcoholic Fatty Liver Disease and Diabetes: An Epidemiological Perspective. Endocrinol Metab (Seoul), 34(3), 226–233.
  • Schäfer, S. A., Müssig, K., Staiger, H., Machicao, F., Stefan, N., Gallwitz, B., Häring, H. U., Fritsche, A. (2009). A common genetic variant in WFS1 determines impaired glucagon-like peptide-1-induced insulin secretion. Diabetologia, 52(6), 1075-82.
  • Vimaleswaran, K. S., Loos, R. J. (2010). Progress in the genetics of common obesity and type 2 diabetes. Expert Rev Mol Med, 12, 7.
  • Winters, S. J., Gogineni, J., Karegar, M., Scoggins, C., Wunderlich, C. A., Baumgartner R., Ghooray, D. T. (2014). Sex hormone-binding globulin gene expression and insulin resistance. J Clin Endocrinol Metab, 99(12), E2780-8.
  • Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., et al. (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature genetics, 40, 638-45.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Lütfiye Özpak

Ayfer Pazarbaşı 0000-0002-5338-7531

Proje Numarası TSA-2017-9090 no’lu proje
Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 1

Kaynak Göster

APA Özpak, L., & Pazarbaşı, A. (2021). Tip 2 Diyabet Modeli Ratların Karaciğer Dokularında Kodlanan Genlerin İfade Düzeyleri. Ankara Sağlık Bilimleri Dergisi, 10(1), 25-34. https://doi.org/10.46971/ausbid.875579