Araştırma Makalesi
BibTex RIS Kaynak Göster

Susam tohumunun besin madde kompozisyonunun dört Aspergillus niger suşları kullanılarak gerçekleştirilen katı kültür fermantasyonu ile zenginleştirilmesi

Yıl 2023, , 135 - 138, 11.07.2023
https://doi.org/10.29278/azd.1174143

Öz

Amaç: Bu çalışma dört A. niger suşu karışımı ile gerçekleştirilen katı kültür fermantasyonunun susam tohumunun besin madde kompozisyonu üzerine etkilerinin araştırılması amacıyla gerçekleştirilmiştir.
Materyal ve Yöntem: Katı kültür fermantasyonunda dört farklı Aspergillus niger suşu (ATCC 200344, ATCC 200345, ATCC 201572 ve ATCC 52172) karışımı kullanılmıştır. Katı kültür fermantasyonundan önce susam tohumu otoklav ile 121 °C’de 15 dakika steril edilmiştir. Aspergillus niger gelişimini teşvik etmek amacıyla susam tohumuna besinsel tuz (glucose: urea : (NH4)2SO4: peptone: KH2PO4: MgSO4.7H2O=4: 2: 6: 1: 4: 1) eklenmiştir. Susam tohumu A. niger suşları karışımıyla (1 ml 106 spor/ml’lik süspansiyon/ 100 g) inoküle edilmiş ve 30 °C’de 7 gün inkübe edilmiştir. Susam tohumu ve fermente susam tohumunun ham protein, ham yağ, ham kül, nötr deterjanda çözünmeyen lif, asit deterjanda çözünmeyen lif ve asit deterjanda çözünmeyen lignin düzeyi belirlenmiştir.
Araştırma Bulguları: Katı kültür fermantasyonuyla susam tohumunun ham protein (P<0.001) ve ham kül (P<0.01) düzeyi artış göstermiştir. Buna karşın, susam tohumunun ham yağ (P<0.05), selüloz (P<0.001), hemiselüloz (P<0.001), nötr deterjanda çözünmeyen lif (P<0.001), asit deterjanda çözünmeyen lif (P<0.01), ve asit deterjanda çözünmeyen lignin (P<0.05) düzeyi azalmıştır.
Sonuç: Çalışmadan elde edilen bulgular A. niger suşlarıyla gerçekleştirilen katı kültür fermantasyonunun susam tohumunun besinsel kompozisyonunu iyileştirebileceğini göstermiştir.

Kaynakça

  • Altop, A. (2019). The effects of diets supplemented with fermented or non-fermented cherry kernels (Prunus avium L.) on growth performance, ileal histology, caecum microflora, and some meat quality parameters in broiler chickens. European Poultry Science, 83, 1-15. doi:10.1399/eps.2019.260
  • AOAC. (2000). Official Methods of Analysis of AOAC International (17th Edition). USA: AOAC International.
  • Bae, J. J., Yeon, S. J., Park, W. J., Hong, G. E., & Lee, C. H. (2016). Production of sesaminol and antioxidative activity of fermented sesame with Lactobacillus plantarum P8, Lactobacillus acidophilus ATCC 4356, Streptococcus thermophilus S10. Food Science and Biotechnology, 25(1), 199-204. doi:10.1007/s10068-016-0030-x
  • Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste management, 32(7), 1341-1346. doi:10.1016/j.wasman.2012.03.006
  • Calvo-Lerma, J., Asensio-Grau, A., García-Hernández, J., Heredia, A., & Andrés, A. (2022). Exploring the impact of solid-state fermentation on macronutrient profile and digestibility in chia (Salvia hispanica) and sesame (Sesamum indicum) seeds. Foods, 11(3), 410. doi:10.3390/foods11030410
  • FAO. (2020). Food and Agriculture Organization.
  • Gungor, E., Altop, A., & Erener, G. (2021a). Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals, 11(2), 364. doi:10.3390/ani11020364
  • Gungor, E., Altop, A., & Erener, G. (2021b). Effect of raw and fermented grape seed on growth performance, antioxidant capacity, and cecal microflora in broiler chickens. Animal, 15(4), 100194. doi:10.1016/j.animal.2021.100194
  • Gungor, E., & Erener, G. (2020). Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poultry science, 99(1), 471-478. doi:10.3382/ps/pez538
  • Hajimohammadi, A., Mottaghitalab, M., & Hashemi, M. (2020). Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances. Italian Journal of Animal Science, 19(1), 712-722. doi:10.1080/1828051x.2020.1790045
  • Lee, S. W., Jeung, M. K., Park, M. H., Lee, S. Y., & Lee, J. (2010). Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food chemistry, 118(3), 681-685. doi:10.1016/j.foodchem.2009.05.040
  • Makinde, F. M., & Akinoso, R. (2014). Comparison between the nutritional quality of flour obtained from raw, roasted and fermented sesame (Sesamum indicum L.) seed grown in Nigeria. Acta Scientiarum Polonorum Technologia Alimentaria, 13(3), 309-319. doi:10.17306/J.AFS.2014.3.9
  • Olude, O., George, F., & Alegbeleye, W. (2016). Utilization of autoclaved and fermented sesame (Sesamum indicum L.) seed meal in diets for Til-aqua natural male tilapia. Animal Nutrition, 2(4), 339-344. doi:10.1016/j.aninu.2016.09.001
  • Rajesh, N., & Raj, R. P. (2010). Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry. Waste Management, 30(11), 2223-2227. doi:10.1016/j.wasman.2009.12.017
  • Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 40(8), 2689-2694. doi:10.1016/j.procbio.2004.12.001
  • Van Soest, P. v., Robertson, J., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2

Enrichment of nutritional composition of sesame seed by solid-state fermentation using four Aspergillus niger strains

Yıl 2023, , 135 - 138, 11.07.2023
https://doi.org/10.29278/azd.1174143

Öz

Objective: This study was conducted to determine the effect of solid-state fermentation using four different A. niger strains on the nutritional composition of sesame seed.
Materials and Methods: The mixture of four different Aspergillus niger strains (ATCC 200344, ATCC 200345, ATCC 201572, and ATCC 52172) was used in the solid-state fermentation. Sesame seed was sterilized at 121 °C for 15 min by autoclave before fermentation. A nutritional salt (glucose: urea: (NH4)2SO4: peptone: KH2PO4: MgSO4.7H2O= 4: 2: 6: 1: 4: 1) was added to sesame seed to support the growth of A. niger strains. Sesame seed was inoculated by the mixture of A. niger strains (at 1 mL of 106 spores/mL for every 100 g) and incubated at 30 °C for seven days. Unfermented and fermented sesame seed were analyzed for determination of the crude protein, ether extract, ash, neutral detergent fiber, acid detergent fiber, and acid detergent lignin content.
Results: The crude protein and ash contents of sesame seed were increased (P<0.001 and P<0.01, respectively) by the mixture of A. niger strains. However, solid-state fermentation decreased the ether extract (P<0.05), cellulose (P<0.001), hemicellulose (P<0.001), neutral detergent fiber (P<0.001), acid detergent fiber (P<0.01), and acid detergent lignin (P<0.05) content of sesame seed.
Conclusion: The obtained results showed that the nutritional composition of sesame seed can be enriched through solid-state fermentation using a mixture of A. niger strains.

Kaynakça

  • Altop, A. (2019). The effects of diets supplemented with fermented or non-fermented cherry kernels (Prunus avium L.) on growth performance, ileal histology, caecum microflora, and some meat quality parameters in broiler chickens. European Poultry Science, 83, 1-15. doi:10.1399/eps.2019.260
  • AOAC. (2000). Official Methods of Analysis of AOAC International (17th Edition). USA: AOAC International.
  • Bae, J. J., Yeon, S. J., Park, W. J., Hong, G. E., & Lee, C. H. (2016). Production of sesaminol and antioxidative activity of fermented sesame with Lactobacillus plantarum P8, Lactobacillus acidophilus ATCC 4356, Streptococcus thermophilus S10. Food Science and Biotechnology, 25(1), 199-204. doi:10.1007/s10068-016-0030-x
  • Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste management, 32(7), 1341-1346. doi:10.1016/j.wasman.2012.03.006
  • Calvo-Lerma, J., Asensio-Grau, A., García-Hernández, J., Heredia, A., & Andrés, A. (2022). Exploring the impact of solid-state fermentation on macronutrient profile and digestibility in chia (Salvia hispanica) and sesame (Sesamum indicum) seeds. Foods, 11(3), 410. doi:10.3390/foods11030410
  • FAO. (2020). Food and Agriculture Organization.
  • Gungor, E., Altop, A., & Erener, G. (2021a). Effect of raw and fermented grape pomace on the growth performance, antioxidant status, intestinal morphology, and selected bacterial species in broiler chicks. Animals, 11(2), 364. doi:10.3390/ani11020364
  • Gungor, E., Altop, A., & Erener, G. (2021b). Effect of raw and fermented grape seed on growth performance, antioxidant capacity, and cecal microflora in broiler chickens. Animal, 15(4), 100194. doi:10.1016/j.animal.2021.100194
  • Gungor, E., & Erener, G. (2020). Effect of dietary raw and fermented sour cherry kernel (Prunus cerasus L.) on digestibility, intestinal morphology and caecal microflora in broiler chickens. Poultry science, 99(1), 471-478. doi:10.3382/ps/pez538
  • Hajimohammadi, A., Mottaghitalab, M., & Hashemi, M. (2020). Influence of microbial fermentation processing of sesame meal and enzyme supplementation on broiler performances. Italian Journal of Animal Science, 19(1), 712-722. doi:10.1080/1828051x.2020.1790045
  • Lee, S. W., Jeung, M. K., Park, M. H., Lee, S. Y., & Lee, J. (2010). Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food chemistry, 118(3), 681-685. doi:10.1016/j.foodchem.2009.05.040
  • Makinde, F. M., & Akinoso, R. (2014). Comparison between the nutritional quality of flour obtained from raw, roasted and fermented sesame (Sesamum indicum L.) seed grown in Nigeria. Acta Scientiarum Polonorum Technologia Alimentaria, 13(3), 309-319. doi:10.17306/J.AFS.2014.3.9
  • Olude, O., George, F., & Alegbeleye, W. (2016). Utilization of autoclaved and fermented sesame (Sesamum indicum L.) seed meal in diets for Til-aqua natural male tilapia. Animal Nutrition, 2(4), 339-344. doi:10.1016/j.aninu.2016.09.001
  • Rajesh, N., & Raj, R. P. (2010). Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry. Waste Management, 30(11), 2223-2227. doi:10.1016/j.wasman.2009.12.017
  • Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 40(8), 2689-2694. doi:10.1016/j.procbio.2004.12.001
  • Van Soest, P. v., Robertson, J., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.S0022-0302(91)78551-2
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvansal Üretim (Diğer)
Bölüm Makaleler
Yazarlar

Aydın Altop 0000-0002-3966-300X

Emrah Güngör 0000-0003-4380-6162

Güray Erener 0000-0002-8025-2560

Yayımlanma Tarihi 11 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Altop, A., Güngör, E., & Erener, G. (2023). Enrichment of nutritional composition of sesame seed by solid-state fermentation using four Aspergillus niger strains. Akademik Ziraat Dergisi, 12(1), 135-138. https://doi.org/10.29278/azd.1174143