Araştırma Makalesi
BibTex RIS Kaynak Göster

Kalınkara Fındık Çeşidinde İç Meyve İriliğinin Biyoaktif Bileşikler Üzerine Etkisi

Yıl 2023, , 29 - 34, 29.10.2023
https://doi.org/10.29278/azd.1313235

Öz

Amaç: Bu çalışma Kalınkara fındık çeşidinde meyve iriliğinin biyoaktif bileşiklerin değişimi üzerine etkisini belirlemek amacıyla yapılmıştır.
Materyal ve Yöntem: Bu çalışma Ulubey (Ordu) ilçesinde bir üretici bahçesinde yetiştirilen Kalınkara fındık çeşidi üzerinde yürütülmüştür. Çalışma tedadüf parselleri deneme desenine göre 3 tekerrürlü, her tekerrürde 3 ocak olacak şekilde dizayn edilmiştir. Hasat edilen meyveler “küçük”, “orta” ve “büyük” olarak iç meyve iriliğine göre sınıflandırılmıştır. Ardından toplam fenolik, toplam flavonoid ve antioksidan aktivitesi belirlenmiştir. Ayrıca incelen özellikler arasındaki ilişkileri belirlemek amacıyla korelasyon katsayıları hesaplanmış ve temel bileşen analizleri gerçekleştirilmiştir.
Araştırma Bulguları: Çalışmada Kalınkara fındık çeşidinde meyve iriliğinin biyoaktif bileşikler üzerine etkisi önemli bulunmuştur. Araştırma bulgularına göre, toplam fenolik içeriği 759 mg 100 g-1 (orta) - 819 mg 100 g-1 (büyük), toplam flavonoid içeriği 8.2 mg 100 g-1 (orta) and 8.7 mg 100 g-1 (küçük), antioksidan aktivitesi FRAP testine göre 0.46 mmol 100 g-1 (orta) - 0.60 mmol 100 g-1 (büyük), DPPH testine göre 1.83 mmol 100 g-1 (orta) - 1.92 mmol 100 g-1 (küçük) arasında belirlenmiştir. Ayrıca, incelenen özelliklerden toplam fenolik ve antioksidan kapasitesi arasında pozitif bir korelasyon tespit edilmiştir. Buna göre toplam fenolik ile DPPH arasındaki korelasyon katsayısı r=0.921*** olarak belirlenirken, FRAP ile r=0.982*** olarak tespit edilmiştir.
Sonuç: Araştırma sonucunda, küçük irilikteki meyvelerde toplam flavonoid içeriği ve DPPH testine göre antioksidan aktivitesinin, büyük irilikteki meyvelerde ise toplam fenolik ve FRAP testine göre antioksidan aktivitesinin yüksek olduğu belirlenmiştir.

Kaynakça

  • Alalwan, T. A., Mohammed, D., Hasan, M., Sergi, D., Ferraris, C., Gasparri, C., Rondanelli, M., & Perna, S. (2022). Almond, hazelnut, and pistachio skin: An opportunity for nutraceuticals. Nutraceuticals, 2(4), 300-310.
  • Alasalvar, C., & Bolling, B. W. (2015). Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. British Journal of Nutrition, 113(2), 68-78.
  • Anonymous, (2019). Türk Standartları Enstitüsü, TSE 3075 İç Fındık Standardı. https://www.tse.org.tr/. (Access date: 12.05.2019).
  • Anonymous, (2023). Kalınkara fındık çeşidi genel özellikleri. Tarım orman bakanlığı, fındık araştırma enstitüsü müdürlüğü. Access date: 11.05.2023. https://arastirma.tarimorman.gov.tr/findik/Sayfalar/Detay.aspx?SayfaId=10
  • Balik, H.I. (2021). Bioactive compounds and fatty acid composition of new Turkish hazelnut cultivars. International Journal of Fruit Science, 21(1), 106-114.
  • Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Beyhan, Ö., Elmastas, M., & Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). Journal of Medicinal Plants Research, 4(11), 1065-1072.
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • Botta, R., Molnar, T. J., Erdogan, V., Valentini, N., Torello Marinoni, D., & Mehlenbacher, S. A. (2019). Hazelnut (Corylus spp.) breeding. Advances in Plant Breeding Strategies: Nut and Beverage Crops: Volume 4, 157-219.
  • Bozoğlu, M., Başer, U., Topuz, B.K., & Eroğlu, N.A. (2019). An overview of hazelnut markets and policy in Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(5), 733-743.
  • FAO, 2023. Crop production statistics. https://www.fao.org/faostat/en/#data/QCL (Access date: 06.06.2023).
  • İslam, A. (2018). Hazelnut culture in Turkey. Akademik Ziraat Dergisi, 7(2), 259-266.
  • İslam, A. (2019). Fındık ıslahında gelişmeler. Akademik Ziraat Dergisi, 8(Özel Sayı), 167-174.
  • Kader, S., Öztür, B., Akgün, M., & Umut, A. (2022). Effect of drying methods on the sensory attributes of hazelnut cultivars in different sizes throughout the storage. Turkish Journal of Food and Agriculture Sciences, 4(2), 69-75.
  • Karakaya, O. (2021). Nut traits and bioactive contents of Kalınkara hazelnut cultivar grown in different region. Paper presented at the 8th International Conference on Agriculture, Animal Science and Rural Development, Bingöl, Turkey, December 24-25.
  • Karakaya, O. (2023). The intensity of the cluster drop affects the bioactive compounds and fatty acid composition in hazelnuts. Grasas y Aceites, 74(1), e487.
  • Kırca, L., Bak, T., Kırca, S., & Karadeniz, T. (2018). Fındığın kullanım alanları ve insan sağlığına etkileri. Bahçe, 47 (Özel sayı 2: Uluslararası tarım kongresi), 292-299.
  • Köksal, A. İ. (2018). Türk fındık çeşitleri. Fındık Tanıtım Grubu Yayınları, Ankara, Türkiye, Ankara, 181s. Shahidi, F., Alasalvar, C., & Liyana-Pathirana, C.M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of agricultural and food chemistry, 55(4), 1212-1220.
  • Solar, A., Medic, A., Slatnar, A., Mikulic-Petkovsek, M., Botta, R., Rovira, M., Sarraquigne, J.P., Silva, A. P., Veberic, R., Stampar, F., Hudina, M., & Bacchetta, L. (2022). The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. Plants, 11(22), 3051.
  • Solar, A., Veberič, R., Bacchetta, L., Botta, R., Drogoudi, P., Metzidakis, I., Rovirai, M., Sarraquigne, J.M., & Silva, A. P. (2009). Phenolic characterization of some hazelnut cultivars from different European germplasm collections. Acta horticulturae, 845, 613-618.
  • Taş, N. G., & Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43, 203-208.
  • Yaman, M., Balta, M.F., Karakaya, O., Kaya, T., Necas, T., Yildiz, E., & Dirim, E. (2023). Assessment of Fatty Acid Composition, Bioactive Compounds, and Mineral Composition in Hazelnut Genetic Resources: Implications for Nutritional Value and Breeding Programs. Horticulturae, 9, 1008.
  • Yilmaz, M., Karakaya, O., Balta, M.F., Balta, F., & Yaman, İ. (2019). Çakıldak fındık çeşidinde iç meyve iriliğine bağlı olarak biyokimyasal özelliklerin değişimi. Akademik Ziraat Dergisi, 8(Özel Sayı), 61-70.
  • Zhishen, J., Mengcheng, T., & Jianming, W., 1999. Research on antioxidant activity of flavonoids from natural materials. Food Chemistry, 64(1999), 555-559.

The Effect of Kernel Size on Bioactive Compounds in Kalınkara Hazelnut Cultivar

Yıl 2023, , 29 - 34, 29.10.2023
https://doi.org/10.29278/azd.1313235

Öz

Objective: This study was carried out to determine the effect of kernel size on the change of bioactive compounds in Kalınkara hazelnut cultivar.
Materials and Methods: This study was conducted on the Kalınkara hazelnut cultivar grown in a producer's orchard in Ulubey (Ordu) district. The study was designed according to the randomized plot design with three replications and three ocak in each replication. Harvested nuts were classified according to kernel size as “small”, “medium” and “large”. Then, total phenolics, total flavonoids, and antioxidant activity were determined. In addition, correlation coefficients were calculated, and principal component analyses were performed to determine the relationships between the examined features.
Results: In the study, it was observed that kernel size was effective on bioactive compounds in Kalınkara hazelnut cultivar. According to the research findings, the total phenolics was determined between 759 mg 100 g-1 (medium) and 819 mg 100 g-1 (large), the total flavonoids was determined between 8.2 mg 100 g-1 (medium) and 8.7 mg 100 g-1 (small), and total antioxidant activity was determined between 0.46 mmol 100 g-1 (medium) and 0.60 mmol 100 g-1 (large) according to the FRAP assay, while it was determined between 1.83 mmol 100 g-1 (medium) and 1.92 mmol 100 g-1 (small) according to the DPPH assay. In addition, a positive correlation was determined between the total phenolics and antioxidant activity. Accordingly, while the correlation coefficient between total phenolics and DPPH assay was r=0.921***, it was r=0.982*** with FRAP assay.
Conclusion: As a result of the research, it was determined that the total flavonoids, and antioxidant activity according to the DPPH test were higher in small kernels. In comparison, total phenolics, and antioxidant activity according to the FRAP assay were higher in large kernels.

Kaynakça

  • Alalwan, T. A., Mohammed, D., Hasan, M., Sergi, D., Ferraris, C., Gasparri, C., Rondanelli, M., & Perna, S. (2022). Almond, hazelnut, and pistachio skin: An opportunity for nutraceuticals. Nutraceuticals, 2(4), 300-310.
  • Alasalvar, C., & Bolling, B. W. (2015). Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. British Journal of Nutrition, 113(2), 68-78.
  • Anonymous, (2019). Türk Standartları Enstitüsü, TSE 3075 İç Fındık Standardı. https://www.tse.org.tr/. (Access date: 12.05.2019).
  • Anonymous, (2023). Kalınkara fındık çeşidi genel özellikleri. Tarım orman bakanlığı, fındık araştırma enstitüsü müdürlüğü. Access date: 11.05.2023. https://arastirma.tarimorman.gov.tr/findik/Sayfalar/Detay.aspx?SayfaId=10
  • Balik, H.I. (2021). Bioactive compounds and fatty acid composition of new Turkish hazelnut cultivars. International Journal of Fruit Science, 21(1), 106-114.
  • Benzie, I.F., & Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • Beyhan, Ö., Elmastas, M., & Gedikli, F. (2010). Total phenolic compounds and antioxidant capacity of leaf, dry fruit and fresh fruit of feijoa (Acca sellowiana, Myrtaceae). Journal of Medicinal Plants Research, 4(11), 1065-1072.
  • Blois, M.S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.
  • Botta, R., Molnar, T. J., Erdogan, V., Valentini, N., Torello Marinoni, D., & Mehlenbacher, S. A. (2019). Hazelnut (Corylus spp.) breeding. Advances in Plant Breeding Strategies: Nut and Beverage Crops: Volume 4, 157-219.
  • Bozoğlu, M., Başer, U., Topuz, B.K., & Eroğlu, N.A. (2019). An overview of hazelnut markets and policy in Turkey. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(5), 733-743.
  • FAO, 2023. Crop production statistics. https://www.fao.org/faostat/en/#data/QCL (Access date: 06.06.2023).
  • İslam, A. (2018). Hazelnut culture in Turkey. Akademik Ziraat Dergisi, 7(2), 259-266.
  • İslam, A. (2019). Fındık ıslahında gelişmeler. Akademik Ziraat Dergisi, 8(Özel Sayı), 167-174.
  • Kader, S., Öztür, B., Akgün, M., & Umut, A. (2022). Effect of drying methods on the sensory attributes of hazelnut cultivars in different sizes throughout the storage. Turkish Journal of Food and Agriculture Sciences, 4(2), 69-75.
  • Karakaya, O. (2021). Nut traits and bioactive contents of Kalınkara hazelnut cultivar grown in different region. Paper presented at the 8th International Conference on Agriculture, Animal Science and Rural Development, Bingöl, Turkey, December 24-25.
  • Karakaya, O. (2023). The intensity of the cluster drop affects the bioactive compounds and fatty acid composition in hazelnuts. Grasas y Aceites, 74(1), e487.
  • Kırca, L., Bak, T., Kırca, S., & Karadeniz, T. (2018). Fındığın kullanım alanları ve insan sağlığına etkileri. Bahçe, 47 (Özel sayı 2: Uluslararası tarım kongresi), 292-299.
  • Köksal, A. İ. (2018). Türk fındık çeşitleri. Fındık Tanıtım Grubu Yayınları, Ankara, Türkiye, Ankara, 181s. Shahidi, F., Alasalvar, C., & Liyana-Pathirana, C.M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of agricultural and food chemistry, 55(4), 1212-1220.
  • Solar, A., Medic, A., Slatnar, A., Mikulic-Petkovsek, M., Botta, R., Rovira, M., Sarraquigne, J.P., Silva, A. P., Veberic, R., Stampar, F., Hudina, M., & Bacchetta, L. (2022). The Effects of the Cultivar and Environment on the Phenolic Contents of Hazelnut Kernels. Plants, 11(22), 3051.
  • Solar, A., Veberič, R., Bacchetta, L., Botta, R., Drogoudi, P., Metzidakis, I., Rovirai, M., Sarraquigne, J.M., & Silva, A. P. (2009). Phenolic characterization of some hazelnut cultivars from different European germplasm collections. Acta horticulturae, 845, 613-618.
  • Taş, N. G., & Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43, 203-208.
  • Yaman, M., Balta, M.F., Karakaya, O., Kaya, T., Necas, T., Yildiz, E., & Dirim, E. (2023). Assessment of Fatty Acid Composition, Bioactive Compounds, and Mineral Composition in Hazelnut Genetic Resources: Implications for Nutritional Value and Breeding Programs. Horticulturae, 9, 1008.
  • Yilmaz, M., Karakaya, O., Balta, M.F., Balta, F., & Yaman, İ. (2019). Çakıldak fındık çeşidinde iç meyve iriliğine bağlı olarak biyokimyasal özelliklerin değişimi. Akademik Ziraat Dergisi, 8(Özel Sayı), 61-70.
  • Zhishen, J., Mengcheng, T., & Jianming, W., 1999. Research on antioxidant activity of flavonoids from natural materials. Food Chemistry, 64(1999), 555-559.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Meyve Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Serkan Uzun 0000-0002-3857-6561

Yayımlanma Tarihi 29 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Uzun, S. (2023). The Effect of Kernel Size on Bioactive Compounds in Kalınkara Hazelnut Cultivar. Akademik Ziraat Dergisi, 12(Özel Sayı), 29-34. https://doi.org/10.29278/azd.1313235