Modellemeye Dayalı Öğretimin Bilişüstü Farkındalık, Tutum Ve Kavramsal Anlamaya Etkisi
Yıl 2016,
Cilt: 7 Sayı: 13, 61 - 104, 01.12.2016
Gül Ünal Çoban
,
Merve Kocagül Sağlam
,
Gonca Solmaz
Öz
Bu çalışmada, modellemeye dayalı yürütülen Fen ve Teknoloji dersi “Ses” ünitesinin öğrencilerin
bilişüstü farkıdalıklarına, fen ve teknoloji dersine yönelik tutumlarına ve ses konusundaki kavramsal
anlamalarına etkisi incelenmiştir. İzmir ilindeki bir ilköğretim okulunun 8. Sınıflarıyla gerçekleştirilen
ve yaklaşık 3,5 hafta süren uygulamada deney ve kontrol grupları ile çalışılmıştır. Deney sınıfında
dersler modellemeye dayalı olarak işlenirken, kontrol sınıfında mevcut programa uygun olarak
işlenmiştir. Veriler, Bilişüstü Ölçeği, Fen ve Teknoloji Tutum Ölçeği ve Ses konusunda Kavramsal
Anlama Soruları ile toplanmıştır. Deney grubundaki öğrencilere ayrıca Bilişüstüne yönelik Açık Uçlu
Sorular da ön ve son test olarak uygulanmıştır. Bilişüstü ve Tutum ölçekleri ile kavramsal anlama
sorularının analizi istatistik programı kullanılarak yapılmıştır. Açık uçlu soruların analizinde ise içerik
analizi yapılmıştır. Öğrencilerin bilişüstü farkındalık profilleri farklı açılardan sorunlu noktalara işaret
ederken, araştırma sonunda bilişüstü farkındalık ve fen ve teknolojiye yönelik tutumlarda her iki grup
arasında anlamlı fark görülmezken; kavramsal anlama açısından deney grubu lehine anlamlı gelişme
izlenmiştir.
Kaynakça
- Acher, A., Arca, M. & Sanmarti, N. (2007). Modeling as a teaching learning process for
understanding materials: A case study in primary education. Science Education, 91(3),
398–419.
Açıkgöz, K. (2002). Aktif öğrenme. İzmir: Eğitim Dünyası Yayınları.
Akpınar, E., Yıldız, E., Tatar, N. ve Ergin, Ö. (2009). Students’ attitudes toward science and
technology: An investigation of gender, grade level, and academic achievement.
Procedia Social and Behavioral Sciences, 1, 2804–2808.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84 (2), 191-215.
Baykul, Y. (1990). İlkokul beşinci sınıftan lise ve dengi okulların son sınıflarına kadar matematik ve
fen derslerine karşı tutumda görülen değişmeler. Ankara: ÖSYM Yayınları.
Blank, L. (2000). A metacognitive learning cycle: A better warranty for student
understanding? Science Education, 84 , 486–506.
Benli, E., Kayabaşı, Y. ve Sarıkaya, M. (2012). İlköğretim 7. Sınıf öğrencilerinin fen ve
teknoloji dersi “Işık” ünitesinde teknoloji destekli öğretimin öğrencilerin fen
başarısına, kalıcılığa ve fene karşı tutumlarına etkisi, GEFAD, 32 (3), 733-760.
Brewer, W. F. (1987). Schemas versus mental models in human memory. In Morris, P. (Ed.),
Modelling Cognition, (pp.187-197) UK: Wiley, Chicester.
Buckley, B. C., Gobert, J.D., Kindfield, A.C., Horwitz, P., Tinker, R., Gerlits, B., Wilensky, U.,
Dede, C. & Willett, J. (2004). Model-based teaching and learning with BioLogica: What
do they learn? How do they learn? How do we know?, Journal of Science Education and
Technology, 13 (1), 23-41.
Büyüköztürk, Ş. (2006). Sosyal Bilimler için Veri Analizi El Kitabı: İstatistik, Araştırma
Deseni, SPSS Uygulamaları ve Yorum. 6. Baskı, Pegem Akademi Yayıncılık: Ankara.
Chang, H.P., Chenb, J.Y., Guoc, C.L, Chend, C.C, Change, C.Y, Linf, S.H., Suf, W.J., Laing,
K.D., Hsua, S.Y., Lina, J.L., Chena, C.C., Chenga, Y.T., Wangf, L.S. & Tsengf , Y.T.
(2007). Investigating primary and secondary students’ learning of physics concepts in
Taiwan. International Journal of Science Education, 29 (4), 465–482.
Chung, G. K. W. K., Harmon, T. C., & Baker, E. L. (2001). The impact of a simulation based
learning design project on student learning. IEEE Transactions on Education, 44 (4), 390-
398.
Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on
sources of creativity in science. In Glover, J. A., Ronning, R. R., and Reynolds, C. R.
(Eds.), Handbook of Creativity: Assessment, Theory and Research, (pp. 341–381), New York:
Plenum.
Clement, J. (2000). Model-based learning as a key research area for science education.
International Journal of Science Education, 22 (9), 1041-1053.
Clement, J. J. (2008). Model based learning and instruction in science. In Clement, J. J. & ReaDupin,
J.J. & Joshua, S. (1989) Analogies and ‘modeling analogies’ in teaching: Some
examples in basic electricity. Science Education, 73 (2), 207–224.
Duran, M.J., Gallardo, S., Toral, S.L., Martinez-Torres, R. & Barrero, F.J. (2007). A learning
methodology using Matlab/Simulink for undergraduate electrical engineering courses
at tending to learner satisfaction outcomes. International Journal of Technology and
Design Education, 17 (1), 55–73
Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for
chemistry education. Science and Education, 10, 581-593.
Fraenkel, J. R. & Wallen, N. E. (2006). How to design and evaluate research in education (5th
Ed.). USA: McGraw-Hill Higher Education.
Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on
transfer, durability and metacognition. Educational Research, 42 (2), 119–139.
Georghiades, P. (2004). Making pupils’ conceptions of electricity more durable by means of
situated metacognition. International Journal of Science Education, 26 (1), 85–99
Gobert, J.D. (2000). A typology of causal models for plate tectonics: Inferential power and
barriers to understanding. International Journal of Science Education, 22 (9), 937–77.
Gobert, J.D. & Buckley, B.C. (2000). Introduction to model based teaching and learning in
science education. International Journal of Science Education, 22 (9), 891-894.
Grotzer, T. & Mittkefehldt, S. (2012). The role of metacognition in students' understanding
and transfer of explanatory structures in science. In Zohar, A. & Dori, Y.J. (Eds.) Metacognition in Science Education: Trends in Current Research (pp.79-99) New York, NY:
Springer Science, Business Media B.V.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research
in Science Teaching, 33 (9), 1-26.
Harrison, A. G. & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways
to learn with models?, School Science And Mathematics, 98 (8), 420-429.
Hennessey, M. G. (1999). Probing the dimensions of metacognition: Implications for conceptual
change teaching-learning. Paper Presented at the Annual Meeting of the National
Association for Research in Science Teaching (Boston, MA, March 28-31).
Hrepic, Z. (2004). Development of a real-time assessment of students’ mental models of sound
propagation. Kansas State University, Doctoral Thesis.
Hrepic, Z., Zollman, D. A. & Rebello, N. S. (2010). Identifying students’ mental models of
sound propagation: The role of conceptual blending in understanding conceptual
change. Pysical Review Special Topics- Physics Education Research, 6, 1-18.
Ingham, A. M. & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at
higher education level. International Journal of Science Education, 13, 193-202.
Johnson-Laird, P. N. (1983). Mental Models: Towards a cognitive science of language, inference and
consciousness. Cambridge: Cambridge University Press.
Jonassen, D., Strobel, J. & Gottdenker, J. (2005). Model building for conceptual change.
Interactive Learning Environments, 13 (1-2), 15-37.
Justi, R., & Gilbert, J. (2002). Modeling, teachers' views on the nature of modeling, and
implications for the education of modelers. International Journal of Science Education,
24(A), 369-387.
Kahle, J. B., & Lakes, M. K. (1983). The myth of equality in science classrooms. Journal of
Research in Science Teaching, 20 (2), 131–140.
Kaufmann, D.R., Patel, V.L. & Magder, S.A. (1996) The explanatory role of spontaneously
generated analogies in reasoning about physiological concepts. International Journal of
Science Education, 18 (3), 369–86.
Kaya, H. ve Böyük, U. (2011). Attitude Towards Physics Lessons and Physical Experiments
of the High School Students. European Journal of Physics Education, 2 (1) 38-49.
Khan, S. (2008). Model based learning and instruction in science. In Clement, J. J. & ReaRamirez,
M. A. (Eds.). Co-construction and model evolution in chemistry (pp. 59-78). New
York, NY: Springer Science, Business Media B.V.
Kramarski, B. & Mevarech, Z.R. (2003) Enhancing mathematical reasoning in the classroom:
Effects of cooperative learning and metacognitive training. American Educational
Research Journal, 40, 281-310.
Kuhn, D. & Dean, D. (2004). Metacognition: A bridge between cognitive psychology and
educational practice. Theory into Practice, 43 (4), 268-273.
Linder, C.J. & Erickson, G.L. (1989). A study of tertiary physics students' conceptualizations
of sound. International Journal of Science Education, 11 (special issue), 491-501.
Linn, M. C., & Bat-Sheva, E. (2006). Science education: Integrating views of learning and
instruction. In Alexander, P. A. & Winne, P. H. (Eds.), Handbook of educational psychology
(2nd ed., pp. 511–543). Mahwah: Erlbaum.
Linn, M. (2003). Technology and science education: Starting points, research programs, and
trends. International Journal of Science Education, 25(6), 727–58.
Martinez, E. M. (2006). What is metacognition. Phi Delta Kappan, 87 (9), 696-699.
Mason, L. (1994). Cognitive and metacognitive aspects in conceptual change by analogy.
Instructional Science, 22, 157-187.
Mayer, R. E.; Dyck, J. L.; Cook, L. K. (1984) Techniques That Help Readers Build Mental
Models From Scientific Texts: Definitions Pretraining And Signaling. Journal Of
Educational Psychology, 76, 6, 1089-1105.
Mayer, R. E. (2002). Understanding conceptual change: A commentary. In Limon, M. &
Mason, L. (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 101 –
111). Dordrecht: Kluwer Academic Publisher.
McCormick, C. B. (2003). Metacognition and learning. In Reynolds, W. M. & Miller, G. E.
(Eds.),Handbook of psychology: Educational psychology (pp. 79–102). Hoboken: Wiley.
McBroom, R. A. (2011). Pre-service science teachers’ mental models regarding dissolution and
precipitation reactions. North Carolina State University Doctoral Thesis.
McElwee, S. (2009). Metacognition for the classroom and beyond: Differentiation and
support for learners. Special Education Support Service, Vol.1.
Merino, M.J. (1998). Some difficulties in teaching the properties of sounds. Physics Education,
33, 101-104.
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd Ed.). Thusand Oaks,
CA: Sage.
Milli Eğitim Bakanlığı (MEB) (2005). Fen ve Teknoloji Dersi (6-8. Sınıflar) Öğretim Programı.
Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Milli Eğitim Bakanlığı (MEB) (2013). Fen Bilimleri Dersi (3-8. Sınıflar) Öğretim Programı.
Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In Magnani, L.,
Nersessian, N. J. & Thagard, P. (Eds.), Models are used to represent reality. New York:
Kluwer Academic/Plenum Publishers.
Ogan Bekiroğlu, F. (2007). Effects of model-based teaching on pre-service physics teachers’
conceptions of the moon, moon phases and other lunar phenomena. International
Journal of Science Education, 29 (5), 555-593.
Papaevripidou, M., Constantinou, C. P. & Zacharia, Z.C. (2009). "Enacting a framework for
developing and assessing modeling abilities in the elementary science classroom".
Paper presented at the European Science Education Research Association Conference (ESERA),
August, in Malmo, Sweden.
Paris S. G. & Newman R. S. (1990). Developmental aspects of self-regulated learning.
Educational Psychologist, 25 (1) 87-102.
Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and
assessing. Theory into Practice, 41(4), 219-225.
Reinfried, S. (2006). Conceptual change in physical geography and environmental sciences
through mental model building: The example of groundwater. International Research in
Geographical and Environmental Education, 15 (1), 41-61.
Robita, C. (2011). Model based teaching and learning in the high school chemistry laboratory.
California State University Master of Science Thesis.
Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in
the search for mental models. Psychological Bulletin, 100, 349–363.
Schmalz, H. (2012). Drawing based modeling and simulation in primary school science education:
The impact on students’ attitude towards science and domain specific knowledge. University of
Twente, Master Thesis.
Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychological Review, 7,
351-371.
Schraw, G. (2006). Knowledge: Structures and processes. In Alexander, P. & Winne, P. (Eds.),
Handbook of educational psychology (2nd ed., pp. 245–264). San Diego: Academic.
Schraw, G., Crippen, K. J. & Hartley, K. (2006). Promoting self-regulation in science
education: Metacognition as part of a broader perspective on learning. Research
in Science Education, 36, 111-139.
Schraw, G., Olafson, L., Weibel, M. & Sewing, D. (2012). Metacognitive knowledge and fieldbased
science learning in an outdoor environmental education program. In Zohar, A. &
Dori, Y. J. (Eds.), Metacognition in science education: Trends in current research (pp.57-78)
New York, NY: Springer Science, Business Media B.V.
Schwarz, C.V. & Gwekwerere, Y. (2007). Using a Guided Inquiry and Modeling Instructional
Framework (EIMA) to Support Preservice K-8 Science Teaching, Science Education, 91
(1), 158-186.
Seraphin, K.D., Philippoff, J., Kaupp, L. & Vallin, L.M. (2012). Metacognition as means to
increase the effectiveness of inquiry-based science education. Science Education
International, 23 (4), 366-382.
Shen, J. & Confrey, J. (2007). From conceptual change to transformative modeling: A case
ttudy on elemenatry teacher in learning astronomy. Science Education, 91, 948-966.
Stavy, R. (1991) Using analogy to overcome misconceptions about conservation of matter.
Journal of Research in Science Teaching, 28 (4), 305–13.
Stratford, S.J., Krajcik, J. & Soloway, E. (1998). Secondary students’ dynamic modeling
processes: Analyzing, reasoning about, synthesizing, and testing models of stream
ecosystems. Journal of Science Education and Technology, 7 (3), 215–34.
Thomas, G.P. & McRobbie, C. J. (2001). Using a metaphor for learning to improve students’
metacognition in the chemistry classroom. Journal of Research in Science Teaching, 38,
222–259.
Treagust, D.F., Harrison, A.G. & Venville, G.L. (1996) Using an analogical teaching approach
to engender conceptual change. International Journal of Science Education, 18 (2), 213–29.
Tregidgo, D., & Ratcliffe, M. (2000). The use of modeling for improving pupils' learning
about cells. School Science Review, 24, 53-59.
Ünal, G. (2005). Fen öğretiminde derinliğine öğrenme: "Basınç" konusunda modelleme. Dokuz
Eylül Üniversitesi Eğitim Bilimleri Enstitüsü Yüksek Lisans Tezi.
Ünal, G. ve Ergin, Ö. (2006). Buluş yoluyla fen öğretiminin öğrencilerin akademik
başarılarına, öğrenme yaklaşımlarına ve tutumlarına etkisi. Türk Fen Eğitimi Dergisi, 3
(1), 36-52.
Ünal Çoban, G. (2009). Modellemeye dayalı fen öğretiminin öğrencilerin kavramsal anlama
düzeylerine, bilimsel süreç becerilerine, bilimsel bilgi ve varlık anlayışlarına etkisi: 7. Sınıf ışık
ünitesi örneği. Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü Doktora Tezi.
Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Affl erbach, P. (2006). Metacognition
and Learning: Conceptual and methodological considerations. Metacognition and
Learning, 1, 3–14.
Veenman, M.V. J. (2012). Metacognition in science education: definitions, constituents and
their intricate relation with cognition. In Zohar, A. & Dori, Y. J. (Eds.), Metacognition in
science education: Trends in current research (pp.21-37) New York, NY: Springer Science,
Business Media B.V.
Vosniadou, S. (2002). On the nature of naive physics. In Limon, M. & Mason, L. (Eds.),
Reconsidering conceptual change: Issues in theory and practice (pp. 61 – 76). Dordrecht:
Kluwer Academic Publisher.
Wang, T., Chiu, M., Lin, J. & Chou, C. (2013). Diagnosing students’ mental models via the
web-based mental models diagnosis system. British Journal of Educational Technology, 44
(2), 45-48.
Weller, H.G. (1995). Diagnosing and altering three Aristotelian alternative conceptions in
dynamics: Microcomputer simulations of scientific models. Journal of Research in Science
Teaching, 32 (3), 271–90.
Wittmann, M.C. (2003). Understanding and affecting student reasoning about sound waves.
International Journal of Science Education, 25(8), 991-1013.
White, B. Y. & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making
science accessible to all students. Cognition and Instruction, 16, 3–118.
Whitebread, D., Coltman, P., Pino Pasternak, D., Sangster, C., Grau, V., Bingham, S.,
Almeqdad, Q. & Demetriou, D. (2009). The development of two observational tools for
assessing metacognition and self-regulated learning in young children. Metacognition
and Learning, 4(1), 63–85.
Wright, T. L. (2012). The effects of modeling instruction on high school physics academic
achievement. Tennessee State University, Unpublished Educational Doctorate
Dissertation, USA.
Yamak, H., Bulut, N. ve Dündar, S. (2014). 5. Sınıf öğrencilerinin bilimsel süreç becerileri ile
fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. GEFAD, 34 (2), 249-265.
Yıldız, E. (2008). 5E Modelinin kullanıldığı kavramsal değişime dayalı öğretimde üst bilişin etkileri:
7. Sınıf Kuvvet ve Hareket ünitesine yönelik bir uygulama. Dokuz Eylül Üniversitesi Eğitim
Bilimleri Enstitüsü Doktora Tezi.
Yıldız, E., Akpınar, E., Tatar, N. ve Ergin, Ö. (2009). İlköğretim öğrencileri için geliştirilen
bilişüstü ölçeği'nin açımlayıcı ve doğrulayıcı faktör analizi. Kuram ve Uygulamada
Eğitim Bilimleri, 9(3), 1573-1604.
Yurt, E. ve Sünbül, A. M. (2012). Sanal ortam ve somut nesneler kullanılarak gerçekleştirilen
modellemeye dayalı etkinliklerin uzamsal düşünme ve zihinsel çevirme becerilerine
etkisi. Kuram ve Uygulamada Eğitim Bilimleri, 12 (3), 1975-1992.
Zhang, B., Liu, X. & Krajcik, J. (2006). Expert models and modeling processes associated with
a computer-modeling tool. Science Education, 90 (4), 579–605.
Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning:
Relating grade, sex and giftedness to self-efficacy and strategy use. Journal of
Educational Psychology, 82, 51-59.
Zohar, A. (2006). The nature and development of teachers’ metastrategic knowledge in the
context of teaching higher order thinking. The Journal of the Learning Sciences, 15, 331–
377.
The Effect of Model Based Teaching on Metacognitive Awareness, Attitudes and Conceptual Understanding
Yıl 2016,
Cilt: 7 Sayı: 13, 61 - 104, 01.12.2016
Gül Ünal Çoban
,
Merve Kocagül Sağlam
,
Gonca Solmaz
Öz
In this study, the effect of model based teaching of “sound” unit on students' metacognitive
awareness, attitudes toward science and technology course and conceptual understanding was
examined. The research was conducted with experimental and control groups and lasted for 3,5
weeks. The experimental group received model based courses whereas the control group received
regular science education both based existing curriculum. Data were collected by using Metacognition
Scale, Attitudes toward Science and Technology Course Scale and Conceptual Understanding
Questions. Additionally, Open-ended Questions for Metacognition was implemented to experimental
group as pre and post test. According to results, no significant differences were observed between
both groups' metacognitive awareness and attitudes toward science and technology course. However,
the experimental group’s conceptual understanding was significantly improved.
Kaynakça
- Acher, A., Arca, M. & Sanmarti, N. (2007). Modeling as a teaching learning process for
understanding materials: A case study in primary education. Science Education, 91(3),
398–419.
Açıkgöz, K. (2002). Aktif öğrenme. İzmir: Eğitim Dünyası Yayınları.
Akpınar, E., Yıldız, E., Tatar, N. ve Ergin, Ö. (2009). Students’ attitudes toward science and
technology: An investigation of gender, grade level, and academic achievement.
Procedia Social and Behavioral Sciences, 1, 2804–2808.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change.
Psychological Review, 84 (2), 191-215.
Baykul, Y. (1990). İlkokul beşinci sınıftan lise ve dengi okulların son sınıflarına kadar matematik ve
fen derslerine karşı tutumda görülen değişmeler. Ankara: ÖSYM Yayınları.
Blank, L. (2000). A metacognitive learning cycle: A better warranty for student
understanding? Science Education, 84 , 486–506.
Benli, E., Kayabaşı, Y. ve Sarıkaya, M. (2012). İlköğretim 7. Sınıf öğrencilerinin fen ve
teknoloji dersi “Işık” ünitesinde teknoloji destekli öğretimin öğrencilerin fen
başarısına, kalıcılığa ve fene karşı tutumlarına etkisi, GEFAD, 32 (3), 733-760.
Brewer, W. F. (1987). Schemas versus mental models in human memory. In Morris, P. (Ed.),
Modelling Cognition, (pp.187-197) UK: Wiley, Chicester.
Buckley, B. C., Gobert, J.D., Kindfield, A.C., Horwitz, P., Tinker, R., Gerlits, B., Wilensky, U.,
Dede, C. & Willett, J. (2004). Model-based teaching and learning with BioLogica: What
do they learn? How do they learn? How do we know?, Journal of Science Education and
Technology, 13 (1), 23-41.
Büyüköztürk, Ş. (2006). Sosyal Bilimler için Veri Analizi El Kitabı: İstatistik, Araştırma
Deseni, SPSS Uygulamaları ve Yorum. 6. Baskı, Pegem Akademi Yayıncılık: Ankara.
Chang, H.P., Chenb, J.Y., Guoc, C.L, Chend, C.C, Change, C.Y, Linf, S.H., Suf, W.J., Laing,
K.D., Hsua, S.Y., Lina, J.L., Chena, C.C., Chenga, Y.T., Wangf, L.S. & Tsengf , Y.T.
(2007). Investigating primary and secondary students’ learning of physics concepts in
Taiwan. International Journal of Science Education, 29 (4), 465–482.
Chung, G. K. W. K., Harmon, T. C., & Baker, E. L. (2001). The impact of a simulation based
learning design project on student learning. IEEE Transactions on Education, 44 (4), 390-
398.
Clement, J. (1989). Learning via model construction and criticism: Protocol evidence on
sources of creativity in science. In Glover, J. A., Ronning, R. R., and Reynolds, C. R.
(Eds.), Handbook of Creativity: Assessment, Theory and Research, (pp. 341–381), New York:
Plenum.
Clement, J. (2000). Model-based learning as a key research area for science education.
International Journal of Science Education, 22 (9), 1041-1053.
Clement, J. J. (2008). Model based learning and instruction in science. In Clement, J. J. & ReaDupin,
J.J. & Joshua, S. (1989) Analogies and ‘modeling analogies’ in teaching: Some
examples in basic electricity. Science Education, 73 (2), 207–224.
Duran, M.J., Gallardo, S., Toral, S.L., Martinez-Torres, R. & Barrero, F.J. (2007). A learning
methodology using Matlab/Simulink for undergraduate electrical engineering courses
at tending to learner satisfaction outcomes. International Journal of Technology and
Design Education, 17 (1), 55–73
Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for
chemistry education. Science and Education, 10, 581-593.
Fraenkel, J. R. & Wallen, N. E. (2006). How to design and evaluate research in education (5th
Ed.). USA: McGraw-Hill Higher Education.
Georghiades, P. (2000). Beyond conceptual change learning in science education: Focusing on
transfer, durability and metacognition. Educational Research, 42 (2), 119–139.
Georghiades, P. (2004). Making pupils’ conceptions of electricity more durable by means of
situated metacognition. International Journal of Science Education, 26 (1), 85–99
Gobert, J.D. (2000). A typology of causal models for plate tectonics: Inferential power and
barriers to understanding. International Journal of Science Education, 22 (9), 937–77.
Gobert, J.D. & Buckley, B.C. (2000). Introduction to model based teaching and learning in
science education. International Journal of Science Education, 22 (9), 891-894.
Grotzer, T. & Mittkefehldt, S. (2012). The role of metacognition in students' understanding
and transfer of explanatory structures in science. In Zohar, A. & Dori, Y.J. (Eds.) Metacognition in Science Education: Trends in Current Research (pp.79-99) New York, NY:
Springer Science, Business Media B.V.
Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research
in Science Teaching, 33 (9), 1-26.
Harrison, A. G. & Treagust, D. F. (1998). Modelling in science lessons: Are there better ways
to learn with models?, School Science And Mathematics, 98 (8), 420-429.
Hennessey, M. G. (1999). Probing the dimensions of metacognition: Implications for conceptual
change teaching-learning. Paper Presented at the Annual Meeting of the National
Association for Research in Science Teaching (Boston, MA, March 28-31).
Hrepic, Z. (2004). Development of a real-time assessment of students’ mental models of sound
propagation. Kansas State University, Doctoral Thesis.
Hrepic, Z., Zollman, D. A. & Rebello, N. S. (2010). Identifying students’ mental models of
sound propagation: The role of conceptual blending in understanding conceptual
change. Pysical Review Special Topics- Physics Education Research, 6, 1-18.
Ingham, A. M. & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at
higher education level. International Journal of Science Education, 13, 193-202.
Johnson-Laird, P. N. (1983). Mental Models: Towards a cognitive science of language, inference and
consciousness. Cambridge: Cambridge University Press.
Jonassen, D., Strobel, J. & Gottdenker, J. (2005). Model building for conceptual change.
Interactive Learning Environments, 13 (1-2), 15-37.
Justi, R., & Gilbert, J. (2002). Modeling, teachers' views on the nature of modeling, and
implications for the education of modelers. International Journal of Science Education,
24(A), 369-387.
Kahle, J. B., & Lakes, M. K. (1983). The myth of equality in science classrooms. Journal of
Research in Science Teaching, 20 (2), 131–140.
Kaufmann, D.R., Patel, V.L. & Magder, S.A. (1996) The explanatory role of spontaneously
generated analogies in reasoning about physiological concepts. International Journal of
Science Education, 18 (3), 369–86.
Kaya, H. ve Böyük, U. (2011). Attitude Towards Physics Lessons and Physical Experiments
of the High School Students. European Journal of Physics Education, 2 (1) 38-49.
Khan, S. (2008). Model based learning and instruction in science. In Clement, J. J. & ReaRamirez,
M. A. (Eds.). Co-construction and model evolution in chemistry (pp. 59-78). New
York, NY: Springer Science, Business Media B.V.
Kramarski, B. & Mevarech, Z.R. (2003) Enhancing mathematical reasoning in the classroom:
Effects of cooperative learning and metacognitive training. American Educational
Research Journal, 40, 281-310.
Kuhn, D. & Dean, D. (2004). Metacognition: A bridge between cognitive psychology and
educational practice. Theory into Practice, 43 (4), 268-273.
Linder, C.J. & Erickson, G.L. (1989). A study of tertiary physics students' conceptualizations
of sound. International Journal of Science Education, 11 (special issue), 491-501.
Linn, M. C., & Bat-Sheva, E. (2006). Science education: Integrating views of learning and
instruction. In Alexander, P. A. & Winne, P. H. (Eds.), Handbook of educational psychology
(2nd ed., pp. 511–543). Mahwah: Erlbaum.
Linn, M. (2003). Technology and science education: Starting points, research programs, and
trends. International Journal of Science Education, 25(6), 727–58.
Martinez, E. M. (2006). What is metacognition. Phi Delta Kappan, 87 (9), 696-699.
Mason, L. (1994). Cognitive and metacognitive aspects in conceptual change by analogy.
Instructional Science, 22, 157-187.
Mayer, R. E.; Dyck, J. L.; Cook, L. K. (1984) Techniques That Help Readers Build Mental
Models From Scientific Texts: Definitions Pretraining And Signaling. Journal Of
Educational Psychology, 76, 6, 1089-1105.
Mayer, R. E. (2002). Understanding conceptual change: A commentary. In Limon, M. &
Mason, L. (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 101 –
111). Dordrecht: Kluwer Academic Publisher.
McCormick, C. B. (2003). Metacognition and learning. In Reynolds, W. M. & Miller, G. E.
(Eds.),Handbook of psychology: Educational psychology (pp. 79–102). Hoboken: Wiley.
McBroom, R. A. (2011). Pre-service science teachers’ mental models regarding dissolution and
precipitation reactions. North Carolina State University Doctoral Thesis.
McElwee, S. (2009). Metacognition for the classroom and beyond: Differentiation and
support for learners. Special Education Support Service, Vol.1.
Merino, M.J. (1998). Some difficulties in teaching the properties of sounds. Physics Education,
33, 101-104.
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd Ed.). Thusand Oaks,
CA: Sage.
Milli Eğitim Bakanlığı (MEB) (2005). Fen ve Teknoloji Dersi (6-8. Sınıflar) Öğretim Programı.
Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Milli Eğitim Bakanlığı (MEB) (2013). Fen Bilimleri Dersi (3-8. Sınıflar) Öğretim Programı.
Ankara: Devlet Kitapları Müdürlüğü Basım Evi.
Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In Magnani, L.,
Nersessian, N. J. & Thagard, P. (Eds.), Models are used to represent reality. New York:
Kluwer Academic/Plenum Publishers.
Ogan Bekiroğlu, F. (2007). Effects of model-based teaching on pre-service physics teachers’
conceptions of the moon, moon phases and other lunar phenomena. International
Journal of Science Education, 29 (5), 555-593.
Papaevripidou, M., Constantinou, C. P. & Zacharia, Z.C. (2009). "Enacting a framework for
developing and assessing modeling abilities in the elementary science classroom".
Paper presented at the European Science Education Research Association Conference (ESERA),
August, in Malmo, Sweden.
Paris S. G. & Newman R. S. (1990). Developmental aspects of self-regulated learning.
Educational Psychologist, 25 (1) 87-102.
Pintrich, P. R. (2002). The role of metacognitive knowledge in learning, teaching, and
assessing. Theory into Practice, 41(4), 219-225.
Reinfried, S. (2006). Conceptual change in physical geography and environmental sciences
through mental model building: The example of groundwater. International Research in
Geographical and Environmental Education, 15 (1), 41-61.
Robita, C. (2011). Model based teaching and learning in the high school chemistry laboratory.
California State University Master of Science Thesis.
Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in
the search for mental models. Psychological Bulletin, 100, 349–363.
Schmalz, H. (2012). Drawing based modeling and simulation in primary school science education:
The impact on students’ attitude towards science and domain specific knowledge. University of
Twente, Master Thesis.
Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychological Review, 7,
351-371.
Schraw, G. (2006). Knowledge: Structures and processes. In Alexander, P. & Winne, P. (Eds.),
Handbook of educational psychology (2nd ed., pp. 245–264). San Diego: Academic.
Schraw, G., Crippen, K. J. & Hartley, K. (2006). Promoting self-regulation in science
education: Metacognition as part of a broader perspective on learning. Research
in Science Education, 36, 111-139.
Schraw, G., Olafson, L., Weibel, M. & Sewing, D. (2012). Metacognitive knowledge and fieldbased
science learning in an outdoor environmental education program. In Zohar, A. &
Dori, Y. J. (Eds.), Metacognition in science education: Trends in current research (pp.57-78)
New York, NY: Springer Science, Business Media B.V.
Schwarz, C.V. & Gwekwerere, Y. (2007). Using a Guided Inquiry and Modeling Instructional
Framework (EIMA) to Support Preservice K-8 Science Teaching, Science Education, 91
(1), 158-186.
Seraphin, K.D., Philippoff, J., Kaupp, L. & Vallin, L.M. (2012). Metacognition as means to
increase the effectiveness of inquiry-based science education. Science Education
International, 23 (4), 366-382.
Shen, J. & Confrey, J. (2007). From conceptual change to transformative modeling: A case
ttudy on elemenatry teacher in learning astronomy. Science Education, 91, 948-966.
Stavy, R. (1991) Using analogy to overcome misconceptions about conservation of matter.
Journal of Research in Science Teaching, 28 (4), 305–13.
Stratford, S.J., Krajcik, J. & Soloway, E. (1998). Secondary students’ dynamic modeling
processes: Analyzing, reasoning about, synthesizing, and testing models of stream
ecosystems. Journal of Science Education and Technology, 7 (3), 215–34.
Thomas, G.P. & McRobbie, C. J. (2001). Using a metaphor for learning to improve students’
metacognition in the chemistry classroom. Journal of Research in Science Teaching, 38,
222–259.
Treagust, D.F., Harrison, A.G. & Venville, G.L. (1996) Using an analogical teaching approach
to engender conceptual change. International Journal of Science Education, 18 (2), 213–29.
Tregidgo, D., & Ratcliffe, M. (2000). The use of modeling for improving pupils' learning
about cells. School Science Review, 24, 53-59.
Ünal, G. (2005). Fen öğretiminde derinliğine öğrenme: "Basınç" konusunda modelleme. Dokuz
Eylül Üniversitesi Eğitim Bilimleri Enstitüsü Yüksek Lisans Tezi.
Ünal, G. ve Ergin, Ö. (2006). Buluş yoluyla fen öğretiminin öğrencilerin akademik
başarılarına, öğrenme yaklaşımlarına ve tutumlarına etkisi. Türk Fen Eğitimi Dergisi, 3
(1), 36-52.
Ünal Çoban, G. (2009). Modellemeye dayalı fen öğretiminin öğrencilerin kavramsal anlama
düzeylerine, bilimsel süreç becerilerine, bilimsel bilgi ve varlık anlayışlarına etkisi: 7. Sınıf ışık
ünitesi örneği. Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü Doktora Tezi.
Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Affl erbach, P. (2006). Metacognition
and Learning: Conceptual and methodological considerations. Metacognition and
Learning, 1, 3–14.
Veenman, M.V. J. (2012). Metacognition in science education: definitions, constituents and
their intricate relation with cognition. In Zohar, A. & Dori, Y. J. (Eds.), Metacognition in
science education: Trends in current research (pp.21-37) New York, NY: Springer Science,
Business Media B.V.
Vosniadou, S. (2002). On the nature of naive physics. In Limon, M. & Mason, L. (Eds.),
Reconsidering conceptual change: Issues in theory and practice (pp. 61 – 76). Dordrecht:
Kluwer Academic Publisher.
Wang, T., Chiu, M., Lin, J. & Chou, C. (2013). Diagnosing students’ mental models via the
web-based mental models diagnosis system. British Journal of Educational Technology, 44
(2), 45-48.
Weller, H.G. (1995). Diagnosing and altering three Aristotelian alternative conceptions in
dynamics: Microcomputer simulations of scientific models. Journal of Research in Science
Teaching, 32 (3), 271–90.
Wittmann, M.C. (2003). Understanding and affecting student reasoning about sound waves.
International Journal of Science Education, 25(8), 991-1013.
White, B. Y. & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making
science accessible to all students. Cognition and Instruction, 16, 3–118.
Whitebread, D., Coltman, P., Pino Pasternak, D., Sangster, C., Grau, V., Bingham, S.,
Almeqdad, Q. & Demetriou, D. (2009). The development of two observational tools for
assessing metacognition and self-regulated learning in young children. Metacognition
and Learning, 4(1), 63–85.
Wright, T. L. (2012). The effects of modeling instruction on high school physics academic
achievement. Tennessee State University, Unpublished Educational Doctorate
Dissertation, USA.
Yamak, H., Bulut, N. ve Dündar, S. (2014). 5. Sınıf öğrencilerinin bilimsel süreç becerileri ile
fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. GEFAD, 34 (2), 249-265.
Yıldız, E. (2008). 5E Modelinin kullanıldığı kavramsal değişime dayalı öğretimde üst bilişin etkileri:
7. Sınıf Kuvvet ve Hareket ünitesine yönelik bir uygulama. Dokuz Eylül Üniversitesi Eğitim
Bilimleri Enstitüsü Doktora Tezi.
Yıldız, E., Akpınar, E., Tatar, N. ve Ergin, Ö. (2009). İlköğretim öğrencileri için geliştirilen
bilişüstü ölçeği'nin açımlayıcı ve doğrulayıcı faktör analizi. Kuram ve Uygulamada
Eğitim Bilimleri, 9(3), 1573-1604.
Yurt, E. ve Sünbül, A. M. (2012). Sanal ortam ve somut nesneler kullanılarak gerçekleştirilen
modellemeye dayalı etkinliklerin uzamsal düşünme ve zihinsel çevirme becerilerine
etkisi. Kuram ve Uygulamada Eğitim Bilimleri, 12 (3), 1975-1992.
Zhang, B., Liu, X. & Krajcik, J. (2006). Expert models and modeling processes associated with
a computer-modeling tool. Science Education, 90 (4), 579–605.
Zimmerman, B. J., & Martinez-Pons, M. (1990). Student differences in self-regulated learning:
Relating grade, sex and giftedness to self-efficacy and strategy use. Journal of
Educational Psychology, 82, 51-59.
Zohar, A. (2006). The nature and development of teachers’ metastrategic knowledge in the
context of teaching higher order thinking. The Journal of the Learning Sciences, 15, 331–
377.