Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 6 Sayı: 1, 42 - 46, 15.02.2018
https://doi.org/10.17694/bajece.402004

Öz

Kaynakça

  • [1] C.D. Evans, D.T. Monteith, D.M Cooper, “Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts”, Environmental Pollution, vol. 137, pp. 55-71, 2005.
  • [2] B. Kumaragurubaran, S. Anandhi, “Reduction of reflection losses in solar cell using anti reflective coating”, 2014 International conference on computation of power, energy, information and communication ICCPEIC, 2014.
  • [3] Fraunhofer Institue of Solar Energy Systems, 2015.
  • [4] Dimmler and Wachter, 2007.
  • [5] White paper for CIGS thin film solar cell technology, 2016.
  • [6] K. Branker, MJM Pathak, JM Pearce, “A review of solar photovoltaic levelized cost of electricity”, Renew. Sustain. Energy, vol. 15, pp. 4470-4482, rev 2011.
  • [7] M. Eckhart, M. El-Ashry, D. Hales, K. Hamilton, P. Rae, “Renewables 2017 Global Status Report”, p. 33, 2017.
  • [8] D. Huh, J. Shin, M. Byun, S. Son, P. Jung, H. Choi, Y. Kim, H. Lee, “Analysis of long-term monitoring data of PV modüle with Siox-based anti-reflective patterned protective glass”, Solar energy materials and solar cells, vol. 170, pp. 33-38, 2017.
  • [9] K.A Moharram, M.S, Abd-Elhady, Ha Kandil, H. el-Sherif, “Influence of cleaning using water and surfactants on the performance of photovoltaic panels”, Energy Convers Manage, vol. 68, pp. 266-272, 2013.
  • [10] M.S. Abd- Elhady, M.M. Fouad, T. Khalil, Improving the efficiency of photovoltaic (PV) panels by oil coating, Energy conversion and management, vol. 115, pp. 1-7, 2016.
  • [11] A.T. Kearney Energy Transition Institute, IPCC 2011, Special Report on Renewable Energy, MIT 2015, The Future of Solar Energy.
  • [12] L.A. Dobrzanski, M. Szindler, Sol gel Tio2 antireflection coating for silicon solar cells, Journal of achievements in materials and manufacturing engineering (JAMME), Vol. 52-1, 2012.
  • [13] S. Yoon, G. Turner, V. Garboushian, Thin, lightweight, %18 efficient space silicon solar cell and array, 25th PVSC, May 1996, Washington USA.
  • [14] X. Zhang, S. Cai, D. You, L. Yan, H. Lv, X. Yuan, B. Jiang, Template-free sol-gel preparation of süperhydrophobic ORMOSIL films for double-Wavelength broadband antireflective coating, Adv. Funct. Mater., vol. 23, no. 25, pp. 4361-4365, 2013.
  • [15] G. Rajan, K. Aryal, T. Ashrafee, S. Karki, S. Babcock, V. Ranjan, Real-time Optimization of Anti-reflective Coating for CIGS Solar Cells, Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 2250-2253.
  • [16] M.Z. Pakhuruddin, Y.Yusof, K.Ibrahim, A.A. Aziz, Fabrication and characterizaton of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell, Optik, vol. 124, pp. 5397-5400, 2013.
  • [17] F.Crisostomo, N.Hjerrild, S. Mesgari, Q. Li, R.A.Taylor, A hybrid PV/T collector using spectrally selective absorbing nanofluids, Applied Energy, vol. 193, pp. 1-14, 2017.
  • [18] U.G. Yasa, M.N. Erim, N. Erim, M.O. Girgin, H. Kurt, “Design of anti-reflective graded height nanogratings for photovoltaic applications”, NUSOD 2017.
  • [19] N. Wang, J. Fang, X. Zhang, G. Wang, L. Wang, C. Liu, H. Zhao, Z. Chen, X.L. Chen, J. Sun, Y. Zhao, “Combined SiO2 antireflective coating with MOCVD-ZnO:B to improve light absorption in thin-film solar cells”, Solar Energy Materials & Solar Cells, vol. 130, pp. 420-425, 2014.
  • [20] Y. Ota, N. Ahmad, K. Nishioka, “A 3,2% output increase in an existing photovoltaic system using an anti-reflection and anti-soiling silica-based coat”, Solar Energy, vol.136, pp. 547-552, 2016.
  • [21] Y. Lu, X. Zhang, J. Huang, J. Li, T. Wei, P. Lan, Y. Yang, H. Xu, W. Song, “Investigation on antireflection coating for Al:ZnO in silicon thin-film solar cells”, Optik, vol. 124, pp. 3392-3395, 2013.
  • [22] G. Rajan, T.Begou, K.Aryal, T.Ashrafee, S.Karki, V.Ranjan, A.A. Rockett, N.J. Podraza, R.W. Collins, S. Marsillac, “Optimization of multi-layered anti-reflective coating for ultra-thin Cu(In,Ga)Se2 Solar Cells”, Photovoltaic Specialists Conference (PVSC), IEEE 43rd, pp. 1506-1510, 2016.
  • [23] D. Huh, J.H. Shin, M. Byun, S. Son, P.H. Jung, H.J. Choi, Y.D. Kim, H. Lee, “Analysis of long-term monitoring data of PV module with SiOx-based anti-reflective patterned protective glass”, Solar Energy Materials and Solar Cells, vol.170, pp. 33-38, 2017.
  • [24] Y.Yuan, X.Lu, G.Yan, R.Hong, Sol-gel preparation of antireflective coating with abrasion resistance by base/acid double catalysis and surface treatment, Soalr Energy, 155, 2017, 1366-1372.
  • [25] S. Yoon, G. Turner, V. Garboushian, Thin, lightweight, 18% efficient space silicon solar cell and array, 25th IEEE PV Conference, 1996, Washington DC USA, pp. 259-262.
  • [26] W. Abeygunasekara, V. Karunaratne, P. Hiralal, “Numerical Modelling of Zinc Oxide Nanowire Anti Reflective Coating”, 10th IEEE International Conference on Industrial and Information Systems ICIIS, 2015, Sri Lanka, pp. 244-249.
  • [27] X. Huang, Y. Yuan, S. Liu, W. Wang, R. Hong, “One-step sol-gel preparation of hydrophobic antireflective SiO2 coating on poly(methyl methacrylate) substrate”, Materials Letter, vol. 208, pp. 62-64, 2017.
  • [28] D.Adak, S.Ghosh, P.Chakrabarty, A.Mondal, H.Saha, R.Mukherjee, R.Bhattacharyya, Self-cleaning V-TiO2:SiO2 thin-film coating with enhanced transmission for solar glass cover and related applications, Solar Energy, vol. 155, pp. 410-418, 2017.
  • [29] G.Womack, P.M.Kaminski, J.M.Walls, “High Temperature Stability of Broadband Anti-reflection Coating on Soda Lime Glass for Solar Modules”, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, LA USA.
  • [30] P.M. Kaminski, G. Womack, J.M. Walls, “Broadband Anti-reflection coating for thin film photovoltaics”, Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, Denver USA.

Researches on Anti-reflection Coating (ARC) Methods Used in PV Systems

Yıl 2018, Cilt: 6 Sayı: 1, 42 - 46, 15.02.2018
https://doi.org/10.17694/bajece.402004

Öz

With the development
of PV systems’ technology over the years and the reduction of production costs,
PV systems are now being used for electricity generation. PV systems are listed
among the renewable energy sources as the only requirement is solar energy and electricity
generation is carried out without any fuel and waste. Solar cells used in PV
systems are adversely affected by extremes of temperature, shading, reflection,
and pollution. It is known that before sunrays reach the cell’s surface, some
of them disappears from the protective glass surface and are reflected back
from the cell through the glass surface. Anti-reflection coatings (ARC) are
used to reduce the energy loss and increase solar cell efficiency and output
power. SiO2 and MgF2 are the most commonly used solutions
among these coatings. It has been seen that the most efficient applications,
with anti-reflection coatings as single, double, triple and more layers, are in
triple layers applications. It has been observed that applications to the protective
glass surface have self-cleaning properties, and TiO2 and ZrO2
are frequently used for this. The reflectance index of the protective glass,
which is normally 1.51, can be reduced to 1.20 in silicone cells and 1.28 in
thin film surfaces with the AR coatings.

Kaynakça

  • [1] C.D. Evans, D.T. Monteith, D.M Cooper, “Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts”, Environmental Pollution, vol. 137, pp. 55-71, 2005.
  • [2] B. Kumaragurubaran, S. Anandhi, “Reduction of reflection losses in solar cell using anti reflective coating”, 2014 International conference on computation of power, energy, information and communication ICCPEIC, 2014.
  • [3] Fraunhofer Institue of Solar Energy Systems, 2015.
  • [4] Dimmler and Wachter, 2007.
  • [5] White paper for CIGS thin film solar cell technology, 2016.
  • [6] K. Branker, MJM Pathak, JM Pearce, “A review of solar photovoltaic levelized cost of electricity”, Renew. Sustain. Energy, vol. 15, pp. 4470-4482, rev 2011.
  • [7] M. Eckhart, M. El-Ashry, D. Hales, K. Hamilton, P. Rae, “Renewables 2017 Global Status Report”, p. 33, 2017.
  • [8] D. Huh, J. Shin, M. Byun, S. Son, P. Jung, H. Choi, Y. Kim, H. Lee, “Analysis of long-term monitoring data of PV modüle with Siox-based anti-reflective patterned protective glass”, Solar energy materials and solar cells, vol. 170, pp. 33-38, 2017.
  • [9] K.A Moharram, M.S, Abd-Elhady, Ha Kandil, H. el-Sherif, “Influence of cleaning using water and surfactants on the performance of photovoltaic panels”, Energy Convers Manage, vol. 68, pp. 266-272, 2013.
  • [10] M.S. Abd- Elhady, M.M. Fouad, T. Khalil, Improving the efficiency of photovoltaic (PV) panels by oil coating, Energy conversion and management, vol. 115, pp. 1-7, 2016.
  • [11] A.T. Kearney Energy Transition Institute, IPCC 2011, Special Report on Renewable Energy, MIT 2015, The Future of Solar Energy.
  • [12] L.A. Dobrzanski, M. Szindler, Sol gel Tio2 antireflection coating for silicon solar cells, Journal of achievements in materials and manufacturing engineering (JAMME), Vol. 52-1, 2012.
  • [13] S. Yoon, G. Turner, V. Garboushian, Thin, lightweight, %18 efficient space silicon solar cell and array, 25th PVSC, May 1996, Washington USA.
  • [14] X. Zhang, S. Cai, D. You, L. Yan, H. Lv, X. Yuan, B. Jiang, Template-free sol-gel preparation of süperhydrophobic ORMOSIL films for double-Wavelength broadband antireflective coating, Adv. Funct. Mater., vol. 23, no. 25, pp. 4361-4365, 2013.
  • [15] G. Rajan, K. Aryal, T. Ashrafee, S. Karki, S. Babcock, V. Ranjan, Real-time Optimization of Anti-reflective Coating for CIGS Solar Cells, Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd, 2250-2253.
  • [16] M.Z. Pakhuruddin, Y.Yusof, K.Ibrahim, A.A. Aziz, Fabrication and characterizaton of zinc oxide anti-reflective coating on flexible thin film microcrystalline silicon solar cell, Optik, vol. 124, pp. 5397-5400, 2013.
  • [17] F.Crisostomo, N.Hjerrild, S. Mesgari, Q. Li, R.A.Taylor, A hybrid PV/T collector using spectrally selective absorbing nanofluids, Applied Energy, vol. 193, pp. 1-14, 2017.
  • [18] U.G. Yasa, M.N. Erim, N. Erim, M.O. Girgin, H. Kurt, “Design of anti-reflective graded height nanogratings for photovoltaic applications”, NUSOD 2017.
  • [19] N. Wang, J. Fang, X. Zhang, G. Wang, L. Wang, C. Liu, H. Zhao, Z. Chen, X.L. Chen, J. Sun, Y. Zhao, “Combined SiO2 antireflective coating with MOCVD-ZnO:B to improve light absorption in thin-film solar cells”, Solar Energy Materials & Solar Cells, vol. 130, pp. 420-425, 2014.
  • [20] Y. Ota, N. Ahmad, K. Nishioka, “A 3,2% output increase in an existing photovoltaic system using an anti-reflection and anti-soiling silica-based coat”, Solar Energy, vol.136, pp. 547-552, 2016.
  • [21] Y. Lu, X. Zhang, J. Huang, J. Li, T. Wei, P. Lan, Y. Yang, H. Xu, W. Song, “Investigation on antireflection coating for Al:ZnO in silicon thin-film solar cells”, Optik, vol. 124, pp. 3392-3395, 2013.
  • [22] G. Rajan, T.Begou, K.Aryal, T.Ashrafee, S.Karki, V.Ranjan, A.A. Rockett, N.J. Podraza, R.W. Collins, S. Marsillac, “Optimization of multi-layered anti-reflective coating for ultra-thin Cu(In,Ga)Se2 Solar Cells”, Photovoltaic Specialists Conference (PVSC), IEEE 43rd, pp. 1506-1510, 2016.
  • [23] D. Huh, J.H. Shin, M. Byun, S. Son, P.H. Jung, H.J. Choi, Y.D. Kim, H. Lee, “Analysis of long-term monitoring data of PV module with SiOx-based anti-reflective patterned protective glass”, Solar Energy Materials and Solar Cells, vol.170, pp. 33-38, 2017.
  • [24] Y.Yuan, X.Lu, G.Yan, R.Hong, Sol-gel preparation of antireflective coating with abrasion resistance by base/acid double catalysis and surface treatment, Soalr Energy, 155, 2017, 1366-1372.
  • [25] S. Yoon, G. Turner, V. Garboushian, Thin, lightweight, 18% efficient space silicon solar cell and array, 25th IEEE PV Conference, 1996, Washington DC USA, pp. 259-262.
  • [26] W. Abeygunasekara, V. Karunaratne, P. Hiralal, “Numerical Modelling of Zinc Oxide Nanowire Anti Reflective Coating”, 10th IEEE International Conference on Industrial and Information Systems ICIIS, 2015, Sri Lanka, pp. 244-249.
  • [27] X. Huang, Y. Yuan, S. Liu, W. Wang, R. Hong, “One-step sol-gel preparation of hydrophobic antireflective SiO2 coating on poly(methyl methacrylate) substrate”, Materials Letter, vol. 208, pp. 62-64, 2017.
  • [28] D.Adak, S.Ghosh, P.Chakrabarty, A.Mondal, H.Saha, R.Mukherjee, R.Bhattacharyya, Self-cleaning V-TiO2:SiO2 thin-film coating with enhanced transmission for solar glass cover and related applications, Solar Energy, vol. 155, pp. 410-418, 2017.
  • [29] G.Womack, P.M.Kaminski, J.M.Walls, “High Temperature Stability of Broadband Anti-reflection Coating on Soda Lime Glass for Solar Modules”, Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, LA USA.
  • [30] P.M. Kaminski, G. Womack, J.M. Walls, “Broadband Anti-reflection coating for thin film photovoltaics”, Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, Denver USA.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Nazmi Ekren

Yayımlanma Tarihi 15 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

APA Ekren, N. (2018). Researches on Anti-reflection Coating (ARC) Methods Used in PV Systems. Balkan Journal of Electrical and Computer Engineering, 6(1), 42-46. https://doi.org/10.17694/bajece.402004

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı