Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 8 Sayı: 3, 218 - 224, 30.07.2020
https://doi.org/10.17694/bajece.729751

Öz

Kaynakça

  • [1] T.J.E. Miller, T. W. Neumann, E Richter, "A permanent magnet excited high efficiency synchronous motor with line-start capability,"18th Ind. Appl. Soc. Annu. Meeting, 1983, pp. 455-461.
  • [2] G.R. Slemon, “On the Design of High-Performance Surface-Mounted PM Motors”, IEEE Transactions on Industry Applications, Vol. 30, No. 1, Jan./Feb. 1994, pp. 134-140.
  • [3] M.A. Rahman, ”Analysis of Brushless Permanent Magnet Synchronous Motors” IEEE Transactions on Industry Applications, Vol. 43, No. 2, April 1996, pp.256-267.
  • [4] M.A. Rahman, G. Slemon, “Promising Applications of Neodymium Boron Iron Magnets in Electrical Machines” IEEE Transactions on Magnetics, Vol. 21, No. 5, 1985, pp.1712-1716.
  • [5] G. Pellegrino, T.M. Jahns,N. Bianchi, W.L. Soong, F. Cupertino, “The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors”, Tutorial Course Notes, Springer Nature, Switzerland, 2016.
  • [6] N. Bianchi, S. Bolognani, ”Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors”, IEEE Transactions on Industry Applications, Vol. 38, No. 5, Sep./Oct. 2002, pp.1259-1265.
  • [7] E. Carraro, M. Degano, M. Morandin, N. Bianchi, “PM Synchronous Machine Comparison for Light Electric Vehicles”, IEEE International Electric Vehicle Conference (IEVC), 17-19 December 2014, Florence, pp.1-8.
  • [8] N. Bianchi, S. Bolognani, P. Frare, “Design Criteria for High-Efficiency SPM Synchronous Motors”, IEEE Transactions on Energy Conversion, Vol. 21, No. 2, June 2006, pp.396-404.
  • [9] C. He, T. Wu, “Analysis and Design of Surface Permanent Magnet Synchronous Motor and Generator”, CES Transactions on Electrical Machines and Systems, Vol. 3, No. 1, March 2019, pp. 94-100.
  • [10] V. Sarac, D. Iliev, “Synchronous Motors of Permanent Magnet Compared to Asynchronous Induction Motor”, Electrotehnica, Electronica, Automatica (EEA), Vol. 65, No. 4, 2017, pp. 51-58.
  • [11] Y. Yang, S. Castano, R. Yang, M. Kasprzak, B. Bilgin, A. Sathyan, H. Dadkhah, A. Emadi, “Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications” IEEE Transactions on Transportation Electrification, Vol, 3, No 1, 2017, pp. 87-97.
  • [12] H. Yetis, E. Mese, M. Biyikli, “Design and Comparison of Ferrite Based IPM and NdFeB Based SPM Synchronous Motors for Gearless Elevator Systems”, International Conference on Electrical Machines (ICEM), 3-6 Sep.2018, Alexandroupoli, pp.1-7.
  • [13] G. Pellegrino, A. Vagati, P. Guglielmi, B. Boazzo, “Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application”, IEEE Transactions On Industry Applications, Vol. 59, No 2, 2012, pp. 803-811.
  • [14] A. M. El-Refaie, T. M. Jahns, “Comparison of synchronous PM machine types for wide constant-power speed range operation”, 40th Conf. Rec. IEEE IAS Annu. Meeting, Oct. 2–6, 2005, vol. 2, pp. 1015–1022.
  • [15] M. S. Islam, S. Mir and T. Sebastian, "Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor", IEEE Transactions on Industry Applications, Vol. 40, No. 3, May-June 2004, pp. 813-820
  • [16] M. S. Islam, S. Mir, T. Sebastian and S. Underwood, "Design considerations of sinusoidally excited permanent-magnet Machines for low-torque-ripple applications", IEEE Transactions on Industry Applications, Vol. 41, No. 4, July-Aug. 2005, pp. 955-962.
  • [17] T. Li and G. Slemon, “Reduction of cogging torque in permanent magnet motors IEEE Transactions on Magnetics, ,Vol. 24, No 6, Nov. 1988, pp. 2901–2903.
  • [18] S. H. Han, T. M. Jahns and W. L. Soong, “Torque Ripple Reduction in Interior Permanent Magnet Synchronous Machines Using the Principle of Mutual Harmonics Exclusion”, IEEE Industry Applications Annual Meeting, Sep. 2007, pp.558-565.
  • [19] S. Han, et. al., "Torque Ripple Reduction in Interior Permanent Magnet Synchronous Machines Using Stators With Odd Number of Slots Per Pole Pair", IEEE Transactions on Energy Conversion, Vol. 25, No. 1, March 2010, pp. 118-127.
  • [20] M. Sanada, K. Hiramoto, S. Morimoto, Y. Takeda, “Torque Ripple Improvement for Synchronous Reluctance Motor Using an Asymmetric Flux Barrier Arrangement”, IEEE Transactions On Industry Applications, Vol. 40, No. 4, Jul./Aug. 2004, pp. 1076-1082.
  • [21] T. Goktas, M. Arkan, ”Diagnosis of Broken Rotor Fault in Inverter-Fed IM by Using Analytical Signal Angular Fluctuation”, 16th International Power Electronics and Motion Control Conference and Exposition, 21-24 Sept 2014, Antalya, pp. 1-6.
  • [22] D.Y. Ohm, “Dynamic Model of PM Synchronous Motors”, Drivetech, Inc., Blacksburg, Virginia, 1997.
  • [23] J.R. Hendershot, T.J.E. Miller, “Design of brushless permanent magnet motors”, Magna Physics Publishing and Clarendon Press, Oxford,1994.
  • [24] M. Ayaz, M. Tezcan, E. Mese, K. Yılmaz, “Parametric Optimization of Permanent Magnet Synchronous Machines” in Proc. 6th International Conference on Control Engineering & Information Technology (CEIT), 25-27 Oct. 2018, İstanbul, pp. 1-6.
  • [25] C. Lu, S. Ferrari, G. Pellegrino, C. Bianchini, M. Davoli, “Parametric Design Method for SPM Machines Including Rounded PM Shape”, in Proc. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 1-5 Oct. 2017, Cincinnati, pp. 4309-4315.

Comparative Design of Permanent Magnet Synchronous Motors for Low-Power Industrial Applications

Yıl 2020, Cilt: 8 Sayı: 3, 218 - 224, 30.07.2020
https://doi.org/10.17694/bajece.729751

Öz

Permanent magnet synchronous motors (PMSMs) have superior features such as less volume and weight, long-life, high performance compared to induction motors. In this study, a comparative design of PMSMs is provided by considering a 2.2 kW induction motor nameplate parameters which is commonly used in industrial applications. A parametric analysis is used in order to design stator slot and magnet geometries of Surface-Mounted Permanent Magnet Synchronous (SPM) and Interior Permanent Magnet (IPM) Motors to get the high efficiency, low torque ripple. Ansys@Maxwell-2D software using time stepping finite element method is utilized to verify the advantages of designed motors compare to induction motors. In addition, material consumptions of both PMSMs and induction motor are compared to show the effectiveness of proposed motors in mechanically. It is shown that designed SPM and IPM motors have higher efficiency, lower torque ripple and volume than that of induction motors.

Kaynakça

  • [1] T.J.E. Miller, T. W. Neumann, E Richter, "A permanent magnet excited high efficiency synchronous motor with line-start capability,"18th Ind. Appl. Soc. Annu. Meeting, 1983, pp. 455-461.
  • [2] G.R. Slemon, “On the Design of High-Performance Surface-Mounted PM Motors”, IEEE Transactions on Industry Applications, Vol. 30, No. 1, Jan./Feb. 1994, pp. 134-140.
  • [3] M.A. Rahman, ”Analysis of Brushless Permanent Magnet Synchronous Motors” IEEE Transactions on Industry Applications, Vol. 43, No. 2, April 1996, pp.256-267.
  • [4] M.A. Rahman, G. Slemon, “Promising Applications of Neodymium Boron Iron Magnets in Electrical Machines” IEEE Transactions on Magnetics, Vol. 21, No. 5, 1985, pp.1712-1716.
  • [5] G. Pellegrino, T.M. Jahns,N. Bianchi, W.L. Soong, F. Cupertino, “The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors”, Tutorial Course Notes, Springer Nature, Switzerland, 2016.
  • [6] N. Bianchi, S. Bolognani, ”Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors”, IEEE Transactions on Industry Applications, Vol. 38, No. 5, Sep./Oct. 2002, pp.1259-1265.
  • [7] E. Carraro, M. Degano, M. Morandin, N. Bianchi, “PM Synchronous Machine Comparison for Light Electric Vehicles”, IEEE International Electric Vehicle Conference (IEVC), 17-19 December 2014, Florence, pp.1-8.
  • [8] N. Bianchi, S. Bolognani, P. Frare, “Design Criteria for High-Efficiency SPM Synchronous Motors”, IEEE Transactions on Energy Conversion, Vol. 21, No. 2, June 2006, pp.396-404.
  • [9] C. He, T. Wu, “Analysis and Design of Surface Permanent Magnet Synchronous Motor and Generator”, CES Transactions on Electrical Machines and Systems, Vol. 3, No. 1, March 2019, pp. 94-100.
  • [10] V. Sarac, D. Iliev, “Synchronous Motors of Permanent Magnet Compared to Asynchronous Induction Motor”, Electrotehnica, Electronica, Automatica (EEA), Vol. 65, No. 4, 2017, pp. 51-58.
  • [11] Y. Yang, S. Castano, R. Yang, M. Kasprzak, B. Bilgin, A. Sathyan, H. Dadkhah, A. Emadi, “Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications” IEEE Transactions on Transportation Electrification, Vol, 3, No 1, 2017, pp. 87-97.
  • [12] H. Yetis, E. Mese, M. Biyikli, “Design and Comparison of Ferrite Based IPM and NdFeB Based SPM Synchronous Motors for Gearless Elevator Systems”, International Conference on Electrical Machines (ICEM), 3-6 Sep.2018, Alexandroupoli, pp.1-7.
  • [13] G. Pellegrino, A. Vagati, P. Guglielmi, B. Boazzo, “Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application”, IEEE Transactions On Industry Applications, Vol. 59, No 2, 2012, pp. 803-811.
  • [14] A. M. El-Refaie, T. M. Jahns, “Comparison of synchronous PM machine types for wide constant-power speed range operation”, 40th Conf. Rec. IEEE IAS Annu. Meeting, Oct. 2–6, 2005, vol. 2, pp. 1015–1022.
  • [15] M. S. Islam, S. Mir and T. Sebastian, "Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor", IEEE Transactions on Industry Applications, Vol. 40, No. 3, May-June 2004, pp. 813-820
  • [16] M. S. Islam, S. Mir, T. Sebastian and S. Underwood, "Design considerations of sinusoidally excited permanent-magnet Machines for low-torque-ripple applications", IEEE Transactions on Industry Applications, Vol. 41, No. 4, July-Aug. 2005, pp. 955-962.
  • [17] T. Li and G. Slemon, “Reduction of cogging torque in permanent magnet motors IEEE Transactions on Magnetics, ,Vol. 24, No 6, Nov. 1988, pp. 2901–2903.
  • [18] S. H. Han, T. M. Jahns and W. L. Soong, “Torque Ripple Reduction in Interior Permanent Magnet Synchronous Machines Using the Principle of Mutual Harmonics Exclusion”, IEEE Industry Applications Annual Meeting, Sep. 2007, pp.558-565.
  • [19] S. Han, et. al., "Torque Ripple Reduction in Interior Permanent Magnet Synchronous Machines Using Stators With Odd Number of Slots Per Pole Pair", IEEE Transactions on Energy Conversion, Vol. 25, No. 1, March 2010, pp. 118-127.
  • [20] M. Sanada, K. Hiramoto, S. Morimoto, Y. Takeda, “Torque Ripple Improvement for Synchronous Reluctance Motor Using an Asymmetric Flux Barrier Arrangement”, IEEE Transactions On Industry Applications, Vol. 40, No. 4, Jul./Aug. 2004, pp. 1076-1082.
  • [21] T. Goktas, M. Arkan, ”Diagnosis of Broken Rotor Fault in Inverter-Fed IM by Using Analytical Signal Angular Fluctuation”, 16th International Power Electronics and Motion Control Conference and Exposition, 21-24 Sept 2014, Antalya, pp. 1-6.
  • [22] D.Y. Ohm, “Dynamic Model of PM Synchronous Motors”, Drivetech, Inc., Blacksburg, Virginia, 1997.
  • [23] J.R. Hendershot, T.J.E. Miller, “Design of brushless permanent magnet motors”, Magna Physics Publishing and Clarendon Press, Oxford,1994.
  • [24] M. Ayaz, M. Tezcan, E. Mese, K. Yılmaz, “Parametric Optimization of Permanent Magnet Synchronous Machines” in Proc. 6th International Conference on Control Engineering & Information Technology (CEIT), 25-27 Oct. 2018, İstanbul, pp. 1-6.
  • [25] C. Lu, S. Ferrari, G. Pellegrino, C. Bianchini, M. Davoli, “Parametric Design Method for SPM Machines Including Rounded PM Shape”, in Proc. 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 1-5 Oct. 2017, Cincinnati, pp. 4309-4315.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Hicret Yetiş 0000-0002-3173-5611

Taner Göktaş 0000-0002-8218-3239

Yayımlanma Tarihi 30 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 3

Kaynak Göster

APA Yetiş, H., & Göktaş, T. (2020). Comparative Design of Permanent Magnet Synchronous Motors for Low-Power Industrial Applications. Balkan Journal of Electrical and Computer Engineering, 8(3), 218-224. https://doi.org/10.17694/bajece.729751

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı