Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 9 Sayı: 3, 221 - 228, 30.07.2021
https://doi.org/10.17694/bajece.908875

Öz

Kaynakça

  • [1] Başoğlu M.E., Kazdaloğlu A., Erfidan T., Bilgin M.Z., Çakır B., Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions, Renewable & Sustainable Energy Reviews, vol. 52, pp. 357-365, 2015.
  • [2] Wolf P., Benda V., Identification of PV solar cells and modules parameters by combining statistical and analytical methods, Solar Energy, vol. 93, pp. 151-157, 2013.
  • [3] Başoğlu M.E., Çakır B., An improved incremental conductance based MPPT approach for PV modules, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 6, pp. 1687-1697, 2015.
  • [4] Başoğlu M.E., Çakır B., Comparisons of MPPT performances of isolated and non-isolated DC-DC converters by using a new approach, Renewable & Sustainable Energy Reviews, vol. 60, pp. 1100-1113, 2016.
  • [5] Taghvaee M.H., Radzi M.A.M., Moosavain S.M., Hizam H., Marhaban M.H., A current and future study on non-isolated DC-DC converters for photovoltaic applications, Renewable & Sustainable Energy Reviews, vol. 17, pp. 216-227, 2013.
  • [6] Esram T., Chapman P. L., Comparison of photovoltaic array maximum power point tracking techniques, IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
  • [7] Mei Q., Shan M., Liu L. Guerrero J. M., A novel improved variable step size incremental resistance MPPT method for PV systems, IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2427-2434, 2011.
  • [8] Liu F., Duan S., Liu F., Liu B., Kang Y., A variable step size INC MPPT method for PV systems, IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, 2008.
  • [9] Reisi A. R., Moradi M. H. Jamasb S., Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review, Renewable and Sustainable Energy Reviews, vol. 19, pp. 433-443, 2013.
  • [10] Başoğlu M.E., Çakır B., Hybrid global maximum power point tracking approach for photovoltaic power optimizers, IET Renewable Power Generation, vol. 12, no. 8, pp. 875-882, 2018.
  • [11] Başoğlu M.E., An approximate short circuit strategy for transient MPPT performance of uniformly irradiated photovoltaic modules, Balkan Journal of Electrical & Computer Engineering, vol. 7, no.1, pp. 88-93, 2019.
  • [12] Satapathy S., Dash K. M. Babu B. C., Variable step size MPPT algorithm for photovoltaic array using zeta converter – A comparative analysis, Allahabad India, 2013, pp. 1-6.
  • [13] Soedibyo, Ashari M., Amri B., The comparative study of buck-boost, cuk, Sepic and zeta converters for maximum power point tracking photovoltaic using P&O method, 2nd International Conference on Information Technology, Computer and Electrical Engineering, Tampa, Indonesia, 2015, pp. 327-332.
  • [14] Boukhelifa A., Kaouane M., Cheriti A., Implementation of incremental conductance MPPT algorithm in a photovoltaic conversion system based on DC-DC Zeta converter, 8th International Conference on Modelling, Identification and Control, Algiers, Algeria, 2016, pp. 612-617.
  • [15] Rashmi, Manohar J., Rajesh K.S., A comparative study and performance analysis of synchronous SEPIC converter and synchronous zeta converter by using PV system with MPPT technique, 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, 2016, pp. 1-6.
  • [16] Vineeth Kumar P. K., Manjunath K., Analysis, design and implementation for control of non-inverted zeta converter using incremental conductance MPPT algorithm for SPV applications, International Conference on Inventive Systems and Control, Hiroshima, 2017, pp. 1-5.
  • [17] Jayashree U., Nightingale R. H., Divya S., Implementation of basic MPPT techniques for zeta converter, 3rd International Conference on Science Technology Engineering & Management, 2017, pp. 601-604.
  • [18] Yunitasari D.R., Sunamo E., Ferdiansyah I., Putra P.A.M., Raharja L.P.S., Implementation of ANN for optimization MPPT using zeta converter, 3rd International Conference on Information and Communications Technology, Yogyakarta Indonesia, 2020, pp. 153-158.
  • [19] Fitriyah, Efendi M.Z., Murdianto F.D., Modeling and simulation of MPPT zeta converter using human psychology optimization algorithm under partial shading condition, International Electronics Symposium (IES), Surabaya, Indonesia, 2020, pp. 14-20.
  • [20] Başoğlu M.E., Analyzes of flyback DC-DC converter for submodule level maximum power point tracking in off-grid photovoltaic systems, Balkan Journal of Electrical & Computer Engineering, vol. 7, no. 3, pp. 269-275, 2019.
  • [21] Başoğlu M. E, Forward converter based distributed global maximum power point tracking in partial shading conditions, SN Applied Sciences, vol. 2, pp. 248-253. 2020.
  • [22] Designing DC/DC converters based on zeta topology, https://www.ti.com/lit/an/slyt372/slyt372.pdf?ts=1616318393550, (accessed: 21.03.2021).
  • [23] Bosch Solar Services, http://bosch-solarenergy.de/en/customer-service/product/kundendienst-2.html (accessed: 25.03.2021)

Comparisons of Different Maximum Power Point Tracking Strategies with Zeta Converter

Yıl 2021, Cilt: 9 Sayı: 3, 221 - 228, 30.07.2021
https://doi.org/10.17694/bajece.908875

Öz

Maximum power point tracking (MPPT) strategy is one of the major parameters affecting efficiency in photovoltaic (PV) systems. In this paper, distributed MPPT approaches are compared with central mode MPPT. Advantages and disadvantages of submodule level MPPT technique and module level MPPT approach are shown with simulation studies. Comparisons are made with incremental conductance (IC) algorithm. In this context, non-isolated zeta converter is used as a power processing unit. Effect of the MPPT strategy on the collected energy performance is observed by simulation studies performed in MATLAB/Simulink. It is clear by these studies that energy capture is bigger in submodule level MPPT strategy and module level MPPT with respect to central mode which is seen by simulations. However, central mode MPPT offers cost effective solution because of the low hardware requirements.

Kaynakça

  • [1] Başoğlu M.E., Kazdaloğlu A., Erfidan T., Bilgin M.Z., Çakır B., Performance analyzes of different photovoltaic module technologies under İzmit, Kocaeli climatic conditions, Renewable & Sustainable Energy Reviews, vol. 52, pp. 357-365, 2015.
  • [2] Wolf P., Benda V., Identification of PV solar cells and modules parameters by combining statistical and analytical methods, Solar Energy, vol. 93, pp. 151-157, 2013.
  • [3] Başoğlu M.E., Çakır B., An improved incremental conductance based MPPT approach for PV modules, Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 6, pp. 1687-1697, 2015.
  • [4] Başoğlu M.E., Çakır B., Comparisons of MPPT performances of isolated and non-isolated DC-DC converters by using a new approach, Renewable & Sustainable Energy Reviews, vol. 60, pp. 1100-1113, 2016.
  • [5] Taghvaee M.H., Radzi M.A.M., Moosavain S.M., Hizam H., Marhaban M.H., A current and future study on non-isolated DC-DC converters for photovoltaic applications, Renewable & Sustainable Energy Reviews, vol. 17, pp. 216-227, 2013.
  • [6] Esram T., Chapman P. L., Comparison of photovoltaic array maximum power point tracking techniques, IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, 2007.
  • [7] Mei Q., Shan M., Liu L. Guerrero J. M., A novel improved variable step size incremental resistance MPPT method for PV systems, IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2427-2434, 2011.
  • [8] Liu F., Duan S., Liu F., Liu B., Kang Y., A variable step size INC MPPT method for PV systems, IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, 2008.
  • [9] Reisi A. R., Moradi M. H. Jamasb S., Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review, Renewable and Sustainable Energy Reviews, vol. 19, pp. 433-443, 2013.
  • [10] Başoğlu M.E., Çakır B., Hybrid global maximum power point tracking approach for photovoltaic power optimizers, IET Renewable Power Generation, vol. 12, no. 8, pp. 875-882, 2018.
  • [11] Başoğlu M.E., An approximate short circuit strategy for transient MPPT performance of uniformly irradiated photovoltaic modules, Balkan Journal of Electrical & Computer Engineering, vol. 7, no.1, pp. 88-93, 2019.
  • [12] Satapathy S., Dash K. M. Babu B. C., Variable step size MPPT algorithm for photovoltaic array using zeta converter – A comparative analysis, Allahabad India, 2013, pp. 1-6.
  • [13] Soedibyo, Ashari M., Amri B., The comparative study of buck-boost, cuk, Sepic and zeta converters for maximum power point tracking photovoltaic using P&O method, 2nd International Conference on Information Technology, Computer and Electrical Engineering, Tampa, Indonesia, 2015, pp. 327-332.
  • [14] Boukhelifa A., Kaouane M., Cheriti A., Implementation of incremental conductance MPPT algorithm in a photovoltaic conversion system based on DC-DC Zeta converter, 8th International Conference on Modelling, Identification and Control, Algiers, Algeria, 2016, pp. 612-617.
  • [15] Rashmi, Manohar J., Rajesh K.S., A comparative study and performance analysis of synchronous SEPIC converter and synchronous zeta converter by using PV system with MPPT technique, 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, 2016, pp. 1-6.
  • [16] Vineeth Kumar P. K., Manjunath K., Analysis, design and implementation for control of non-inverted zeta converter using incremental conductance MPPT algorithm for SPV applications, International Conference on Inventive Systems and Control, Hiroshima, 2017, pp. 1-5.
  • [17] Jayashree U., Nightingale R. H., Divya S., Implementation of basic MPPT techniques for zeta converter, 3rd International Conference on Science Technology Engineering & Management, 2017, pp. 601-604.
  • [18] Yunitasari D.R., Sunamo E., Ferdiansyah I., Putra P.A.M., Raharja L.P.S., Implementation of ANN for optimization MPPT using zeta converter, 3rd International Conference on Information and Communications Technology, Yogyakarta Indonesia, 2020, pp. 153-158.
  • [19] Fitriyah, Efendi M.Z., Murdianto F.D., Modeling and simulation of MPPT zeta converter using human psychology optimization algorithm under partial shading condition, International Electronics Symposium (IES), Surabaya, Indonesia, 2020, pp. 14-20.
  • [20] Başoğlu M.E., Analyzes of flyback DC-DC converter for submodule level maximum power point tracking in off-grid photovoltaic systems, Balkan Journal of Electrical & Computer Engineering, vol. 7, no. 3, pp. 269-275, 2019.
  • [21] Başoğlu M. E, Forward converter based distributed global maximum power point tracking in partial shading conditions, SN Applied Sciences, vol. 2, pp. 248-253. 2020.
  • [22] Designing DC/DC converters based on zeta topology, https://www.ti.com/lit/an/slyt372/slyt372.pdf?ts=1616318393550, (accessed: 21.03.2021).
  • [23] Bosch Solar Services, http://bosch-solarenergy.de/en/customer-service/product/kundendienst-2.html (accessed: 25.03.2021)
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Engin Başoğlu 0000-0002-6228-4112

Yayımlanma Tarihi 30 Temmuz 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 3

Kaynak Göster

APA Başoğlu, M. E. (2021). Comparisons of Different Maximum Power Point Tracking Strategies with Zeta Converter. Balkan Journal of Electrical and Computer Engineering, 9(3), 221-228. https://doi.org/10.17694/bajece.908875

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı