Derleme
BibTex RIS Kaynak Göster

Odun Kökenli Malzemelerin Takviyesi ile Oluşturulan Polilaktik Asit Matrisli Kompozitler

Yıl 2020, Cilt: 22 Sayı: 3, 1061 - 1076, 15.12.2020
https://doi.org/10.24011/barofd.744585

Öz

Bu derleme çalışmasında, son 10 yılda odun kökenli doğal liflerin polilaktik asit matrisine takviyesi ile oluşturulan kompozit malzemeler üzerine yapılan çalışmalar incelenmiştir. Odun kökenli doğal lifler, güçlü, hafif ve düşük ağırlıkta, yüksek özgül mukavemete sahip, ucuz, çevre dostu ve doğada biyolojik olarak parçalanabilir özelliklerde olduğundan polimer matrisli kompozitlerde kullanımı yaygındır. Genel olarak lifler, odun, sisal, kenevir, keten, kenaf ve bambu gibi bitki kaynaklı doğal malzemelerden elde edilmektedir. Odun unu, odun lifi, selüloz lifi, mikrokristalin selüloz ve selüloz nano parçacıklar gibi elde edilen bu malzemeler, polilaktik asit polimer matrisine takviye edilerek, mekanik özelliklerinin geliştirilmesi sağlanmaktadır. Bu çalışmada, polilaktik asit polimer matrisine odun kökenli malzemelerin takviyesi ile üretilen kompozit malzemelerin mekanik özellikleri, üretim teknikleri, takviye elamanlarının polilaktik asit matrisi üzerine etkileri, ilave edilen takviye oranları, ara yüz malzemelerin etkileri üzerine yapılmış çalışmalar incelenerek, elde edilen tüm bulgular ve sonuçlar özetlenmiştir.

Kaynakça

  • 1. Adeniyi, A. G., Onifade, D. V., Ighalo, J. O., & Adeoye, A. S. (2019). A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176(August), 107305.
  • 2. Al, G., Aydemir, D., Ayrilmis, N., Kaygin, B., & Gunduz, G. (2018). Učinak nanočestica boron-nitrida na neka svojstva biopolimernih nanokompozita s celuloznim nanovlaknima i nanočesticama gline. Drvna Industrija, 69(1), 43–48.
  • 3. Altuntas, E., Salan, T., Karaogul, E., & Aydemir, D. (2018). Effects of MA-g-PP and lignocellulosic filler addition on several properties of poly(L-lactic acid)/polypropylene composites. International Journal of Polymer Analysis and Characterization, 23(1), 89–98.
  • 4. Alvarado, N., Romero, J., Torres, A., López de Dicastillo, C., Rojas, A., Galotto, M. J., & Guarda, A. (2018). Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: Development an active food packaging material. Journal of Food Engineering, 217, 1–10.
  • 5. Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661–4667.
  • 6. Averous, L., & Boquillon, N. (2004). Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydrate Polymers, 56(2), 111–122.
  • 7. Ayrilmis, N. (2018). Effect of layer thickness on surface properties of 3D printed materials produced from wood flour/PLA filament. Polymer Testing, 71(July), 163–166.
  • 8. Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering, 174(May), 106956.
  • 9. Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7–8), 1601–1607.
  • 10. Calori, I. R., Braga, G., de Jesus, P. da C. C., Bi, H., & Tedesco, A. C. (2020). Polymer scaffolds as drug delivery systems. European Polymer Journal, 129(September 2019),
  • 11. Chan, C. M., Vandi, L. J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2018). Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 58(3), 444–494.
  • 12. Chuayjuljit, S., Wongwaiwattanakul, C., Chaiwutthinan, P., & Prasassarakich, P. (2017). Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: Physical and morphological properties. Polymer Composites, 38(12), 2841–2851.
  • 13. Clemons, C. (2008). Raw materials for wood-polymer composites. Wood-Polymer Composites, 1–22.
  • 14. Cogswell, F. N., & Leach, D. C. (1986). Thermoplastic Composites. 1, 75–87.
  • 15. Dalu, M., Temiz, A., Altuntaş, E., Demirel, G. K., & Aslan, M. (2019). Characterization of tanalith E treated wood flour filled polylactic acid composites. Polymer Testing, 76(April), 376–384.
  • 16. Dong, J., Huang, X., Muley, P., Wu, T., Barekati-Goudarzi, M., Tang, Z., Li, M., Lee, S., Boldor, D., & Wu, Q. (2020). Carbonized cellulose nanofibers as dielectric heat sources for microwave annealing 3D printed PLA composite. Composites Part B: Engineering, 184(November 2019), 107640.
  • 17. dos Santos, F. A., Iulianelli, G. C. V., & Tavares, M. I. B. (2017). Effect of microcrystalline and nanocrystals cellulose fillers in materials based on PLA matrix. Polymer Testing, 61, 280–288.
  • 18. Elsawy, M. A., Kim, K. H., Park, J. W., & Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79(May), 1346–1352.
  • 19. Faludi, G., Dora, G., Renner, K., Móczó, J., & Pukánszky, B. (2013). Improving interfacial adhesion in pla/wood biocomposites. Composites Science and Technology, 89, 77–82.
  • 20. Gan, I., & Chow, W. S. (2018). Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packaging and Shelf Life, 17(July), 150–161.
  • 21. Gregorova, A., Hrabalova, M., Wimmer, R., Saake, B., & Altaner, C. (2009). Poly(lactide acid) composites reinforced with fibers obtained from different tissue types of Picea sitchensis. Journal of Applied Polymer Science, 114(5), 2616–2623.
  • 22. Gritsch, L., Conoscenti, G., La Carrubba, V., Nooeaid, P., & Boccaccini, A. R. (2019). Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules. Materials Science and Engineering C, 94(September 2018), 1083–1101.
  • 23. Guo, R., Ren, Z., Bi, H., Song, Y., & Xu, M. (2018). Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with Fused Deposition Modeling. European Polymer Journal, 107(June), 34–45.
  • 24. Guo, Y., Ruan, K., Shi, X., Yang, X., & Gu, J. (2020). Factors affecting thermal conductivities of the polymers and polymer composites: A review. Composites Science and Technology, 193(March), 108134.
  • 25. Haghshenas, M. (2016). Metal–Matrix Composites. Reference Module in Materials Science and Materials Engineering, October 2015, 0–28.
  • 26. Han, H., Wang, X., & Wu, D. (2012). Preparation, crystallization behaviors, and mechanical properties of biodegradable composites based on poly(L-lactic acid) and recycled carbon fiber. Composites Part A: Applied Science and Manufacturing, 43(11), 1947–1958.
  • 27. Han, S., Jin, X., Wang, J., Costa, F., Bendickson, R., & Kaczmarczyk, M. (2012). The numerical analysis and validation of compression molding process. SPE Automotive and Composites Divisions - 12th Annual Automotive Composites Conference and Exhibition 2012, ACCE 2012: Unleashing the Power of Design, 3(April), 827–839.
  • 28. Hegyesi, N., Zhang, Y., Kohári, A., Polyák, P., Sui, X., & Pukánszky, B. (2019). Enzymatic degradation of PLA/cellulose nanocrystal composites. Industrial Crops and Products, 141(October), 111799.
  • 29. Huda, M. S., Drzal, L. T., Misra, M., & Mohanty, A. K. (2006). Wood-fiber-reinforced poly(lactic acid) composites: Evaluation of the physicomechanical and morphological properties. Journal of Applied Polymer Science, 102(5), 4856–4869.
  • 30. İşmal, Ö. E., & Paul, R. (2017). Composite textiles in high-performance apparel. In High-Performance Apparel: Materials, Development, and Applications.
  • 31. Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M. D., & Sánchez-Nácher, L. (2014). Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 58, 23–33.
  • 32. Kathavate, V. S., Pawar, D. N., Bagal, N. S., Adkine, A. S., & Salunkhe, V. G. (2020). Micromechanics based models for effective evaluation of elastic properties of reinforced polymer matrix composites. Materials Today: Proceedings, 21, 1298–1302.
  • 33. Khoo, R. Z., Ismail, H., & Chow, W. S. (2016). Thermal and Morphological Properties of Poly (Lactic Acid)/Nanocellulose Nanocomposites. Procedia Chemistry, 19, 788–794.
  • 34. Koh, J. J., Zhang, X., & He, C. (2018). Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. International Journal of Biological Macromolecules, 109, 99–113.
  • 35. Koodalingam, B., Senthilkumar, P., & Rajesh Babu, S. (2020). Study of mechanical properties of the polymer matrix composite materials using pistachio shells. Materials Today: Proceedings, xxxx.
  • 36. Kowalczyk, M., Piorkowska, E., Kulpinski, P., & Pracella, M. (2011). Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers. Composites Part A: Applied Science and Manufacturing, 42(10), 1509–1514.
  • 37. Kushwaha, S., & Bagha, A. K. (2020). Application of composite materials for vibroacoustic – A review. Materials Today: Proceedings, xxxx.
  • 38. Le Duigou, A., Castro, M., Bevan, R., & Martin, N. (2016). 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials and Design, 96, 106–114.
  • 39. Lee, S. Y., Kang, I. A., Doh, G. H., Yoon, H. G., Park, B. D., & Wu, Q. (2008). Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: Effect of filler content and coupling treatment. Journal of Thermoplastic Composite Materials, 21(3), 209–223.
  • 40. Li, Y. (2011). Wood-Polymer Composites. Advances in Composite Materials - Analysis of Natural and Man-Made Materials, September 2011.
  • 41. Liu, D. Y., Yuan, X. W., Bhattacharyya, D., & Easteal, A. J. (2010). Characterisation of solution cast cellulose nanofibre - Reinforced poly(lactic acid). Express Polymer Letters, 4(1), 26–31.
  • 42. Loureiro, N. C., Esteves, J. L., Viana, J. C., & Ghosh, S. (2014). Development of polyhydroxyalkanoates/poly(lactic acid) composites reinforced with cellulosic fibers. Composites Part B: Engineering, 60, 603–611.
  • 43. Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501.
  • 44. Maged, A., Bhuiyan, N., Kaytbay, S., & Haridy, S. (2019). Continuous improvement of injection moulding using Six Sigma: case study. International Journal of Industrial and Systems Engineering, 32(2), 243.
  • 45. Mathew, A. P., Oksman, K., & Sain, M. (2006). The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. Journal of Applied Polymer Science, 101(1), 300–310.
  • 46. Muley, S., Nandgude, T., & Poddar, S. (2016). Extrusion–spheronization a promising pelletization technique: In-depth review. Asian Journal of Pharmaceutical Sciences, 11(6), 684–699.
  • 47. Nagaraja, K. C., Rajanna, S., Prakash, G. S., & Rajeshkumar, G. (2020). Mechanical properties of polymer matrix composites: Effect of hybridization. Materials Today: Proceedings, xxxx, 2019–2021.
  • 48. Ozyhar, T., Baradel, F., & Zoppe, J. (2020a). Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites. Composites Part A: Applied Science and Manufacturing, 132, 105827.
  • 49. Ozyhar, T., Baradel, F., & Zoppe, J. (2020b). Effect of functional mineral additive on processability and material properties of wood-fiber reinforced poly(lactic acid) (PLA) composites. Composites Part A: Applied Science and Manufacturing, 132(July), 3743–3753.
  • 50. Perić, M., Putz, R., & Paulik, C. (2019). Influence of nanofibrillated cellulose on the mechanical and thermal properties of poly(lactic acid). European Polymer Journal, 114(March), 426–433.
  • 51. Qian, S., & Sheng, K. (2017). PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Composites Science and Technology, 148, 59–69.
  • 52. Raj, S. S., Kannan, T. K., Kathiresan, M., Balachandar, K., & Krishnakumar, S. (2020). Why not stir casting for polymer composites? Investigations on poly lactic acid based wood plastic composite. Materials Today: Proceedings, xxxx.
  • 53. Ramesh, M. (2016). Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Progress in Materials Science, 78–79, 1–92.
  • 54. Ramu, P., Jaya Kumar, C. V., & Palanikumar, K. (2019). Mechanical characteristics and terminological behavior study on natural fiber nano reinforced polymer composite - A review. Materials Today: Proceedings, 16, 1287–1296.
  • 55. Riley, A. (2012). Basics of polymer chemistry for packaging materials. In Packaging Technology. Woodhead Publishing Limited. 56. Rowell, R. M. (1984). Penetration and Reactivity of Cell Wall Components. The Chemıstry Of Solid Wood, pp.175–210.
  • 57. Sabari Narayanan, G., & Senthil Kumar, K. (2020). Study of mechanical properties of the polymer matrix composite material (solid wool). Materials Today: Proceedings, xxxx.
  • 58. Saeed, U., Nawaz, M. A., & Al-Turaif, H. A. (2018). Wood flour reinforced biodegradable PBS/PLA composites. Journal of Composite Materials, 52(19), 2641–2650.
  • 59. Sarangi, S., & Sinha, A. K. (2016). Mechanical properties of hybrid fiber reinforced concrete. Indian Journal of Science and Technology, 9(30), 1–21.
  • 60. Saxena, M., Pappu, A., Sharma, A., Haque, R., & Wankhede, S. (2011). Composite Materials from Natural Resources: Recent Trends and Future Potentials. Advances in Composite Materials - Analysis of Natural and Man-Made Materials, September.
  • 61. Shah, B. L., Selke, S. E., Walters, M. B., & Heiden, P. A. (2008). Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polymer Composites, 29(6), 655–663.
  • 62. Silva, T. F. da, Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 251(May), 114441.
  • 63. Silvester, F. D. (1967). Structure of Wood. Timber, pp. 8–13.
  • 64. Spiridon, I., Darie, R. N., & Kangas, H. (2016). Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Composites Part B: Engineering, 92, 19–27.
  • 65. Tao, Y., Wang, H., Li, Z., Li, P., & Shi, S. Q. (2017). Development and application ofwood flour-filled polylactic acid composite filament for 3d printing. Materials, 10(4), 1–6.
  • 66. Teuber, L., Osburg, V. S., Toporowski, W., Militz, H., & Krause, A. (2016). Wood polymer composites and their contribution to cascading utilisation. Journal of Cleaner Production, 110, 9–15.
  • 67. Vasiliev, V. V., & Morozov, E. V. (2018). Introduction. Advanced Mechanics of Composite Materials and Structures, xvii–xxv.
  • 68. Wang, R.-M., Zheng, S.-R., & Zheng, Y.-P. (2011). Introduction to polymer matrix composites. Polymer Matrix Composites and Technology, 1–548.
  • 69. Wang, Z., Xu, J., Lu, Y., Hu, L., Fan, Y., Ma, J., & Zhou, X. (2017). Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution. Industrial Crops and Products, 109(October), 889–896.
  • 70. Wei, L., Agarwal, U. P., Matuana, L., Sabo, R. C., & Stark, N. M. (2018). Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer, 135, 305–313.
  • 71. Wei, L., Stark, N. M., Sabo, R. C., & Matuana, L. (2016). Modification of Cellulose Nanocrystals (CNCs) for use in Poly(lactic acid) (PLA)-CNC Composite Packaging Products. June.
  • 72. Yang, T. C. (2018). Effect of extrusion temperature on the physico-mechanical properties of unidirectional wood fiber-reinforced polylactic acid composite (WFRPC) components using fused depositionmodeling. Polymers, 10(9).
  • 73. Zhang, C. (2014). Understanding the wear and tribological properties of ceramic matrix composites. Advances in Ceramic Matrix Composites: Second Edition, 401–428.
  • 74. Zhang, Y., Cui, L., Xu, H., Feng, X., Wang, B., Pukánszky, B., Mao, Z., & Sui, X. (2019). Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. International Journal of Biological Macromolecules, 137, 197–204.
  • 75. Zhu, J., Xue, L., Wei, W., Mu, C., Jiang, M., & Zhou, Z. (2015). Lignin PLA bio-composites. BioResources, 10(3), 4315–4325.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kompozit ve Hibrit Malzemeler
Bölüm Review Articles and Editorials
Yazarlar

Hatice Yaprak Aydın 0000-0002-3412-6643

Suat Altun 0000-0002-7080-7489

Yayımlanma Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 3

Kaynak Göster

APA Yaprak Aydın, H., & Altun, S. (2020). Odun Kökenli Malzemelerin Takviyesi ile Oluşturulan Polilaktik Asit Matrisli Kompozitler. Bartın Orman Fakültesi Dergisi, 22(3), 1061-1076. https://doi.org/10.24011/barofd.744585


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com