Yerli Ağaç Türlerinden Üretilen Kontrplak Kaplı Perde Duvarların Yanal Yük Altındaki Performansı
Yıl 2021,
Cilt: 23 Sayı: 2, 528 - 535, 16.08.2021
Aydın Demir
,
Abdullah Uğur Birinci
,
Hasan Öztürk
Öz
Kontrplaklar deprem ve rüzgâr gibi yanal yüklere karşı yapının daha fazla yer değiştirmesini ve yatay deformasyona uğramasını sağlayarak çökmesini engellerler ve bundan dolayı hafif çerçeveli ahşap yapıların perde duvarlarında sıkça kullanılırlar. Hem kontrplakların teknolojik özelliklerini hem de kurulan perde duvarın yapısal özelliklerini birçok faktör etkileyebilmektedir. Perde duvarlar tasarlanırken ve üretilirken bu faktörlerin göz önünde bulundurulması gerekir. Literatürde; ağaç türü, levha kalınlıkları, lif yönü, kusurlar, bağlantı elemanlarının türü, yeri ve birbirleri arasındaki mesafeleri gibi değişkenlerin perde duvarların yapısal davranışları üzerinde etkili oldukları belirtilmiştir. Bu çalışmada, yerli ağaç türlerinden üretilen kontrplak kaplı perde duvarların yanal yük altındaki yatay deformasyon miktarlarının belirlenmesi amaçlanmıştır. Bununla birlikte perde duvarların üretiminde kullanılacak bazı değişkenlerin yatay deformasyon miktarları üzerine etkileri de ortaya konulmuştur. Farklı ağaç türü (sarıçam ve ladin), lif yönü (liflere dik ve paralel), bağlantı elemanı türü (6d ve 8d) ve arasındaki mesafeler (levha kenarlarında 76 ile 152 mm, levha ortasında 152 ile 305 mm) kullanılarak oluşturulan perde duvarların yanal yük altındaki yatay deformasyonları ASTM E 72 standardına göre belirlenmiştir. Çalışmanın sonucunda, ladin kontrplaklar ile kaplanan perde duvarlar sarıçama göre genel olarak daha fazla yatay deformasyona uğramıştır. Bununla birlikte, kontrplak levhalarının liflere paralel olarak konumlandırıldığı, 6d bağlantı elemanı ile 152-305 mm aralıklarla montelenen perde duvarların genel olarak daha yüksek yatay deformasyon değerleri verdiği tespit edilmiştir.
Destekleyen Kurum
TÜBİTAK
Teşekkür
Yazarlar 115O454 nolu proje için sağladığı finansal destek için Türk Bilimsel ve Teknik Araştırma Kurumu’na (TÜBİTAK) teşekkürü bir borç bilir.
Kaynakça
- 1. American Society for Testing and Materials (ASTM) E72 - 13a (2014). Standard Test Methods of Conducting Strength Tests of Panels for Building Construction, West Conshohocken, A, United States.
- 2. Bagheri MM, Doudak G (2020). Structural characteristics of light-frame wood shear walls with various construction detailing. Engineering Structures, 205, 110093.
- 3. Bal BC, Bektaş I (2013). Okaliptüs, kayın ve kavak kaplamalarından üretilen kontrplakların eğilme özellikleri, Kastamonu Üniversitesi Orman Fakültesi Dergisi, 13(2), 175-181.
- 4. Bott JW (2005). Horizontal stiffness of wood diaphragms. Master Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
- 5. Bozkurt AY, Erdin N (1992). Odun Anatomisi. İstanbul Üniversitesi Orman Fakültesi Yayınları, Yayın No: 415, İstanbul.
- 6. Çalışkan Ö, Meriç E, Yüncüler M (2019). Ahşap ve ahşap yapıların dünü, bugünü ve yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
- 7. Demir A, Demirkir C, Aydin I (2019). The Effect of some technological properties of plywood panels on seismic resistant performance of wooden shear wall. Sigma, 10(1), 37-45.
- 8. Demirkir C, Colakoglu G, Karacabeyli E (2013). Effect of manufacturing factors on technological properties of plywood from northern turkey and suitability of panels for use in shear walls. Journal of Structural Engineering, 139(12), 04013002.
- 9. Demirkır C (2012). Çam türlerinden elde edilen kaplamaların yapı maksatlı kontrplak üretiminde değerlendirilmesi, Doktora Tezi, KTÜ, Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Anabilim Dalı, Trabzon.
- 10. Durham J, Lam F, Prion HG (2001). Seismic resistance of wood shear walls with large OSB panels. Journal of Structural Engineering, 127(12), 1460-1466.
- 11. EN 1995-1-2 (2004). Eurocode 5. Design of timber structures - Part 1-2: General - Structural fire design, European Standards, Brussels, Belgium.
- 12. Guíñez F, Santa María H, Almazán JL (2019). Monotonic and cyclic behaviour of wood frame shear walls for mid-height timber buildings. Engineering Structures, 189, 100-110.
- 13. Han Z, Dong W, Song, B (2018). Experimental study on nail joint shearing properties of light frame wooden shear walls. Engineering and Applied Sciences, 3(4), 113-120.
- 14. Kho D (2018). Seismic performance of timber-steel hybrid systems with infilled plywood shear walls. Master Dissertation, Master of Civil Engineering, University of Canterbury, New Zealand.
- 15. Liu Y, Gao Z, Ma H, Gong M, Wang H (2021). Racking Performance of Poplar Laminated Veneer Lumber Frames and Frame-shear Hybrid Walls. BioResources, 16(1), 354-371.
- 16. Philip Line PE, Ned Waltz PE, Tom Skaggs PE (2008). Seismic Equivalence Parameters for Engineered Wood frame Wood Structural Panel Shear Walls. Wood Design Focus. https://www.awc.org/pdf/codes-standards/publications/archives/wdf/WDF-2008-SeismicEquivalence-0807.pdf (15.03.2021).
- 17. Salenikovich AJ (2000). The racking performance of light-frame shear walls, Doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
- 18. Shadravan S, Ramseyer CC (2018). Investigation of wood shear walls subjected to lateral load. Structures, 16, 82-96.
- 19. Ulusal Deprem Stratejisi ve Eylem Planı (2013). T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, 2012-2023. https://www.afad.gov.tr/upload/Node/2403/files/udsep_1402013_kitap.pdf. (21.02.2021).
- 20. Van de Lindt JW, Walz MA (2003). Development and application of wood shear wall reliability model. Journal of structural Engineering, 129(3),405-413.
- 21. Way D, Sinha A, Kamke FA (2020). Performance of light-frame timber shear walls produced with weathered sheathing. Journal of Architectural Engineering, 26(1), 04019022.
- 22. Xiao Y, Li Z, Wang R (2014). Lateral loading behaviors of lightweight wood-frame shear walls with ply-bamboo sheathing panels. Journal of Structural Engineering 141(3), B4014004.
Performance Under Lateral Load of Plywood Sheathed Shear Walls Produced from Native Wood Species
Yıl 2021,
Cilt: 23 Sayı: 2, 528 - 535, 16.08.2021
Aydın Demir
,
Abdullah Uğur Birinci
,
Hasan Öztürk
Öz
Plywood prevents the structure from collapsing by causing more displacement and horizontal deformation against lateral loads such as earthquakes and wind and therefore it is frequently used in the shear walls of light-frame wood structures. Many factors can affect both technological properties of plywood and structural properties of shear wall installed. These factors need to be considered when designing and producing shear walls. In the literature, it was stated that variables such as wood species, panel thickness, fibre direction, defects, type and location of fasteners and their distance between each other affect the structural behaviour of shear walls. In this study, it is aimed to determine the amount of horizontal deformation under lateral load of plywood sheathed shear walls produced from native tree species. The horizontal deformation amounts under lateral load of the shear walls formed using different wood species (scots pine and spruce), fibre direction (perpendicular and parallel to the fibres), type of fastener (6d and 8d) and the distance between them (76 to 152 mm at panel edges, 152 to 305 mm at panel interior) were determined according to ASTM E 72 standard. As a result of the study, shear walls sheathed with spruce plywood generally gave more horizontal deformation than scots pine. In addition, it has been determined that the shear walls were positioned their plywood panels as parallel to the fibres and mounted with 6d fasteners at spacings of 152-305 mm generally gave higher horizontal deformation values
Kaynakça
- 1. American Society for Testing and Materials (ASTM) E72 - 13a (2014). Standard Test Methods of Conducting Strength Tests of Panels for Building Construction, West Conshohocken, A, United States.
- 2. Bagheri MM, Doudak G (2020). Structural characteristics of light-frame wood shear walls with various construction detailing. Engineering Structures, 205, 110093.
- 3. Bal BC, Bektaş I (2013). Okaliptüs, kayın ve kavak kaplamalarından üretilen kontrplakların eğilme özellikleri, Kastamonu Üniversitesi Orman Fakültesi Dergisi, 13(2), 175-181.
- 4. Bott JW (2005). Horizontal stiffness of wood diaphragms. Master Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
- 5. Bozkurt AY, Erdin N (1992). Odun Anatomisi. İstanbul Üniversitesi Orman Fakültesi Yayınları, Yayın No: 415, İstanbul.
- 6. Çalışkan Ö, Meriç E, Yüncüler M (2019). Ahşap ve ahşap yapıların dünü, bugünü ve yarını. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(1), 109-118.
- 7. Demir A, Demirkir C, Aydin I (2019). The Effect of some technological properties of plywood panels on seismic resistant performance of wooden shear wall. Sigma, 10(1), 37-45.
- 8. Demirkir C, Colakoglu G, Karacabeyli E (2013). Effect of manufacturing factors on technological properties of plywood from northern turkey and suitability of panels for use in shear walls. Journal of Structural Engineering, 139(12), 04013002.
- 9. Demirkır C (2012). Çam türlerinden elde edilen kaplamaların yapı maksatlı kontrplak üretiminde değerlendirilmesi, Doktora Tezi, KTÜ, Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Anabilim Dalı, Trabzon.
- 10. Durham J, Lam F, Prion HG (2001). Seismic resistance of wood shear walls with large OSB panels. Journal of Structural Engineering, 127(12), 1460-1466.
- 11. EN 1995-1-2 (2004). Eurocode 5. Design of timber structures - Part 1-2: General - Structural fire design, European Standards, Brussels, Belgium.
- 12. Guíñez F, Santa María H, Almazán JL (2019). Monotonic and cyclic behaviour of wood frame shear walls for mid-height timber buildings. Engineering Structures, 189, 100-110.
- 13. Han Z, Dong W, Song, B (2018). Experimental study on nail joint shearing properties of light frame wooden shear walls. Engineering and Applied Sciences, 3(4), 113-120.
- 14. Kho D (2018). Seismic performance of timber-steel hybrid systems with infilled plywood shear walls. Master Dissertation, Master of Civil Engineering, University of Canterbury, New Zealand.
- 15. Liu Y, Gao Z, Ma H, Gong M, Wang H (2021). Racking Performance of Poplar Laminated Veneer Lumber Frames and Frame-shear Hybrid Walls. BioResources, 16(1), 354-371.
- 16. Philip Line PE, Ned Waltz PE, Tom Skaggs PE (2008). Seismic Equivalence Parameters for Engineered Wood frame Wood Structural Panel Shear Walls. Wood Design Focus. https://www.awc.org/pdf/codes-standards/publications/archives/wdf/WDF-2008-SeismicEquivalence-0807.pdf (15.03.2021).
- 17. Salenikovich AJ (2000). The racking performance of light-frame shear walls, Doctoral dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA.
- 18. Shadravan S, Ramseyer CC (2018). Investigation of wood shear walls subjected to lateral load. Structures, 16, 82-96.
- 19. Ulusal Deprem Stratejisi ve Eylem Planı (2013). T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı, 2012-2023. https://www.afad.gov.tr/upload/Node/2403/files/udsep_1402013_kitap.pdf. (21.02.2021).
- 20. Van de Lindt JW, Walz MA (2003). Development and application of wood shear wall reliability model. Journal of structural Engineering, 129(3),405-413.
- 21. Way D, Sinha A, Kamke FA (2020). Performance of light-frame timber shear walls produced with weathered sheathing. Journal of Architectural Engineering, 26(1), 04019022.
- 22. Xiao Y, Li Z, Wang R (2014). Lateral loading behaviors of lightweight wood-frame shear walls with ply-bamboo sheathing panels. Journal of Structural Engineering 141(3), B4014004.