Araştırma Makalesi
BibTex RIS Kaynak Göster

Antalya-Gebiz Yöresi Kızılçam Meşcereleri için Uyumlu Gövde Hacmi ve Gövde Çapı Modelleri

Yıl 2022, Cilt: 24 Sayı: 2, 289 - 303, 15.08.2022
https://doi.org/10.24011/barofd.1084729

Öz

Ülkemizin ekolojik ve ekonomik açıdan önemli ağaç türlerinden birisi Kızılçam (Pinus brutia Ten.)’dır. Bu nedenle türün sürdürülebilir yönetimi ve planlaması için hasılat ve büyüme modellerine ihtiyaç vardır. Hasılat ve büyüme modellerinin en önemli bileşenlerinden birisi de ağaç hacim tahminleridir. Ülkemizde ağaç hacim tahminleri genellikle tek girişli hacim tabloları kullanılarak yapılmaktadır. Ancak söz konusu hacim tabloları kullanılarak, güvenilir ve doğru hacim tahminleri yapılması oldukça güçtür. Günümüzde ağaç hacim tahminleri için en doğru yaklaşım tarzlarından birinin uyumlu gövde çapı ve gövde hacim denklemleri olduğu ifade edilmektedir. Bu çalışmada, Antalya-Gebiz yöresi doğal kızılçam meşcereleri için uyumlu gövde hacmi ve gövde çapı denklemleri geliştirilmiştir. Bu amaçla, Max ve Burkhart (1976), Parresol vd. (1987), Clark vd. (1991) ve Jiang vd. (2005) tarafından geliştirilen parçalı gövde çapı modelleri seçilmiştir. Seçilen modeller, gövde çapı ve gövde hacim tahminleri açısından tüm ağaç ve gövdenin farklı bölümleri için karşılaştırılmıştır. Geliştirilen tüm modeller gerek gövde çapı gerekse gövde hacim tahminlerinde başarılı sonuçlar üretmiştir. Test edilen tüm modeller, gövde çapı tahminlerindeki varyasyonun %94’ünden; gövde hacim tahminlerindeki varyasyonun ise %95’inden daha fazlasını açıklamıştır. Gövde çapı tahminlerindeki hatalar 2,8 cm’den, gövde hacim tahminlerindeki hatalar ise 0,02 m3’ten daha az bulunmuştur. En başarılı tahminler Clark vd. (1991) tarafından geliştirilen gövde çapı modeli ile elde edilmiştir. Ayrıca çalışma kapsamında geliştirilen modeller, yöresel tek girişli hacim tablosu değerleri ile de karşılaştırılmıştır. Test edilen dört gövde hacim modeli de yöresel tek girişli hacim tablosundan daha iyi sonuçlar ortaya koymuştur.

Kaynakça

  • Bailey, R. L. (1995). Upper stem volumes from stem analysis data: an overlapping bolts method. Canadian Journal of Forest Research, 25(1), 170-173.
  • Bi, H. (2000). Trigonometric variable-form taper equations for Australian eucalypts. Forest Science, 46(3), 397-409.
  • Biging, G. S. (1984). Taper equations for second-growth mixed conifers of Northern California. Forest Science, 30(4), 1103-1117.
  • Brooks, J. R., Jiang, L. and Ozçelik, R. (2008). Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1-2), 147-151.
  • Cao, Q. V., Burkhart, H. E. and Max, T. A. (1980). Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1), 71-80.
  • Castedo-Dorado, F., Gómez-García, E., Diéguez-Aranda, U., Barrio-Anta, M. and Crecente-Campo, F. (2012). Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Annals of Forest Science, 69(6), 735-746.
  • Clark, A. (1991). Stem profile equations for southern tree species (Vol. 282). Southeastern Forest Experiment Station.
  • Crecente-Campo, F., Alboreca, A. R. and Diéguez-Aranda, U. (2009). A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of forest science, 66(8), 808.
  • de-Miguel, S., Mehtätalo, L., Shater, Z., Kraid, B. and Pukkala, T. (2012). Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42(7), 1383-1394.
  • Diéguez-Aranda, U., Castedo-Dorado, F., Álvarez-González, J. G. and Rojo, A. (2006). Compatible taper function for Scots pine plantations in northwestern Spain. Canadian Journal of Forest Research, 36(5), 1190-1205.
  • Ercanlı, İ., Kurt, A. K. ve Bolat, F. (2014). Adana-Feke Kızılçam (Pinus Brutia Ten.) meşcereleri için gövde çapı ve gövde hacim denklemlerinin karışık etkili modelleme ile geliştirilmesinde bazı varyans yapılarının karşılaştırılması. I. Ulusal Akdeniz Orman Ve Çevre Sempozyumu, 22, 24.
  • Fang, Z., Borders, B. E., & Bailey, R. L. (2000). Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science, 46(1), 1-12.
  • Figueiredo-Filho, A., Borders, B. E. and Hitch, K. L. (1996). Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management, 83(1-2), 39-46.
  • Fortin, M., Schneider, R. and Saucier, J. P. (2013). Volume and error variance estimation using integrated stem taper models. Forest Science, 59(3), 345-358.
  • Heiðarsson, L. and Pukkala, T. (2011). Taper functions for lodgepole pine (Pinus contorta) and Siberian larch (Larix sibirica) in Iceland.
  • Hussain, A., Shahzad, M. K., Burkhart, H. E. and Jiang, L. (2021). Stem taper functions for white birch (Betula platyphylla) and costata birch (Betula costata) in the Xiaoxing’an Mountains, northeast China. Forestry: An International Journal of Forest Research, 94(5), 714-733.
  • Hussain, A., Shahzad, M. K., He, P. and Jiang, L. (2020). Stem taper equations for three major conifer species of Northeast China. Scandinavian Journal of Forest Research, 35(8), 562-576.
  • Jiang, L., Brooks, J. R. and Wang, J. (2005). Compatible taper and volume equations for yellow-poplar in West Virginia. Forest ecology and management, 213(1-3), 399-409.
  • Jordan, L., Berenhaut, K., Souter, R. and Daniels, R. F. (2005). Parsimonious and completely compatible taper, total, and merchantable volume models. Forest science, 51(6), 578-584.
  • Klos, R. J., Wang, G. G., Dang, Q. L. and East, E. W. (2007). Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Forestry, 22(3), 163-170.
  • Kozak, A. (1988). A variable-exponent taper equation. Canadian Journal of Forest Research, 18(11), 1363-1368.
  • Kozak, A. (1997). Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Canadian Journal of Forest Research, 27(5), 619-629.
  • Kozak, A. (2004). My last words on taper equations. The Forestry Chronicle, 80(4), 507-515.
  • Kozak, A., Munro, D. D. and Smith, J. H. G. (1969). Taper functions and their application in forest inventory. The Forestry Chronicle, 45(4), 278-283.
  • Li, R. and Weiskittel, A. R. (2010). Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Annals of Forest Science, 67(3), 302.
  • Max, T. A. and Burkhart, H. E. (1976). Segmented polynomial regression applied to taper equations. Forest Science, 22(3), 283-289.
  • McTague, J. P. and Bailey, R. L. (1987). Simultaneous total and merchantable volume equations and a compatible taper function for loblolly pine. Canadian Journal of Forest Research, 17(1), 87-92.
  • OGM (2020). Orman Genel Müdürlüğü Resmi İstatistikleri. http://www.ogm.gov.tr/ekutuphane/Sayfalar/Istatistikler.aspx (05.02.2022).
  • Ormerod, D. W. (1973). A simple bole model. The Forestry Chronicle, 49(3), 136-138.
  • Özçelik, R. and Brooks, J. R. (2012). Compatible volume and taper models for economically important tree species of Turkey. Annals of Forest Science, 69(1), 105-118.
  • Özçelik, R. and Cao, Q. V. (2017). Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. Forest Science, 63(4), 349-355.
  • Özçelik, R. and Crecente-Campo, F. (2016). Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus Mountains, Southern Turkey. Forest Science, 62(1), 78.
  • Özçelik, R., Diamantopoulou, M. J., Wiant Jr, H. V. and Brooks, J. R. (2008). Comparative study of standard and modern methods for estimating tree bole volume of three species in Turkey. Forest Products Journal, 58(6), 73.
  • Pancoast, A. D. (2018). Evaluation of Taper and Volume Estimation Techniques for Ponderosa Pine in Eastern Oregon and Eastern Washington.
  • Parresol, B. R., Hotvedt, J. E. and Cao, Q. V. (1987). A volume and taper prediction system for bald cypress. Canadian Journal of Forest Research, 17(3), 250-259.
  • Poudel, K. P., Temesgen, H. and Gray, A. N. (2018). Estimating upper stem diameters and volume of Douglas-fir and Western hemlock trees in the Pacific northwest. Forest Ecosystems, 5(1), 1-12.
  • Rodríguez, F. and Lizarralde, I. (2009, April). Non-destructive measurement techniques for taper equation development. A study case for black pine (Pinus nigra Arn.) in the northern Iberic Range (Spain). In Proceedings of the IUFRO Conference Forest, Wildlife and Wood Sciences for Society Development, Prague, Czech Republic (pp. 16-18).
  • Sakici, O. E., Misir, N., Yavuz, H. and Misir, M. (2008). Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23(6), 522-533.
  • Sakici, O. E. and Ozdemir, G. (2018). Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdaği fir stands in Karabük region, Turkey. Cerne, 24, 439-451.
  • SAS Institute Inc. (2008). SAS/ETS® 9.2 User’s guide. SAS Institute Inc. Cary. N.C.
  • Schlaegel, B. E. (1983). Development of a form class taper model for willow oak. Athens, GA: University of Georgia. 69 p (Doctoral dissertation, Ph. D. dissertation. How To Use Volume Tables).
  • Şenyurt, M. and Ercanli, I. (2019). A comparison of artificial neural network models and regression models to predict tree volumes for Crimean Black Pine trees in Cankiri forests. Šumarski list, 143(9-10), 413-423.
  • Tang, X., Pérez-Cruzado, C., Fehrmann, L., Álvarez-González, J. G., Lu, Y. and Kleinn, C. (2016). Development of a compatible taper function and stand-level merchantable volume model for Chinese fir plantations. PloS one, 11(1), e0147610.
  • Williams, M. S. and Reich, R. M. (1997). Exploring the error structure of taper equations. Forest science, 43(3), 378-386.

Compatible Stem Volume and Stem Diameter Equations for Brutian Pine Stands in Antalya-Gebiz Region

Yıl 2022, Cilt: 24 Sayı: 2, 289 - 303, 15.08.2022
https://doi.org/10.24011/barofd.1084729

Öz

Brutian pine (Pinus brutia Ten.) is one of the most important tree species ecologically and economically. Reliable and accurate growth and yield models are needed for sustainable forest management and planning of this species. One of the most important components of the growth and yield models is tree stem volume estimates. Usually, tree volume estimations are still made with single-entry volume tables in Turkey. However, these local volume tables are insufficient for reliable and accurate volume estimation. It is stated that one of the most correct approaches to meet the deficiency in this subject is the use of compatible stem diameter and stem volume equations. In this study, compatible stem diameter and volume equations were developed for Brutian pine trees in Antalya-Gebiz region. For this purpose, parameter estimates were made for the stem diameter and stem volume equations that have been developed by Max and Burkhart (1976), Parresol et al. (1987), Clark et al. (1991), and Jiang et al. (2005). All developed models yielded successful results in both stem diameter and stem volume estimations. The errors in the diameter and volume estimations were found to be less than 2.8 cm and less than 0.02 m3, respectively. In addition, diameter and volume estimates were made at 10 distinct parts of the stem to determine the accuracy and reliability of the models developed. Additionally, the stem volume predictions obtained from proposed models in this study were compared with the volume estimates obtained with the regional volume table, and it was seen that proposed models gave better results than the local volume table. Among the four stem diameter and stem volume models developed, the most successful results were obtained with the model developed by Clark et al. (1991). In addition, the developed models were also compared with the results of local volume table. Tested models produced better results than the local volume table.

Kaynakça

  • Bailey, R. L. (1995). Upper stem volumes from stem analysis data: an overlapping bolts method. Canadian Journal of Forest Research, 25(1), 170-173.
  • Bi, H. (2000). Trigonometric variable-form taper equations for Australian eucalypts. Forest Science, 46(3), 397-409.
  • Biging, G. S. (1984). Taper equations for second-growth mixed conifers of Northern California. Forest Science, 30(4), 1103-1117.
  • Brooks, J. R., Jiang, L. and Ozçelik, R. (2008). Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. Forest Ecology and Management, 256(1-2), 147-151.
  • Cao, Q. V., Burkhart, H. E. and Max, T. A. (1980). Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit. Forest Science, 26(1), 71-80.
  • Castedo-Dorado, F., Gómez-García, E., Diéguez-Aranda, U., Barrio-Anta, M. and Crecente-Campo, F. (2012). Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain. Annals of Forest Science, 69(6), 735-746.
  • Clark, A. (1991). Stem profile equations for southern tree species (Vol. 282). Southeastern Forest Experiment Station.
  • Crecente-Campo, F., Alboreca, A. R. and Diéguez-Aranda, U. (2009). A merchantable volume system for Pinus sylvestris L. in the major mountain ranges of Spain. Annals of forest science, 66(8), 808.
  • de-Miguel, S., Mehtätalo, L., Shater, Z., Kraid, B. and Pukkala, T. (2012). Evaluating marginal and conditional predictions of taper models in the absence of calibration data. Canadian Journal of Forest Research, 42(7), 1383-1394.
  • Diéguez-Aranda, U., Castedo-Dorado, F., Álvarez-González, J. G. and Rojo, A. (2006). Compatible taper function for Scots pine plantations in northwestern Spain. Canadian Journal of Forest Research, 36(5), 1190-1205.
  • Ercanlı, İ., Kurt, A. K. ve Bolat, F. (2014). Adana-Feke Kızılçam (Pinus Brutia Ten.) meşcereleri için gövde çapı ve gövde hacim denklemlerinin karışık etkili modelleme ile geliştirilmesinde bazı varyans yapılarının karşılaştırılması. I. Ulusal Akdeniz Orman Ve Çevre Sempozyumu, 22, 24.
  • Fang, Z., Borders, B. E., & Bailey, R. L. (2000). Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. Forest Science, 46(1), 1-12.
  • Figueiredo-Filho, A., Borders, B. E. and Hitch, K. L. (1996). Taper equations for Pinus taeda plantations in Southern Brazil. Forest Ecology and Management, 83(1-2), 39-46.
  • Fortin, M., Schneider, R. and Saucier, J. P. (2013). Volume and error variance estimation using integrated stem taper models. Forest Science, 59(3), 345-358.
  • Heiðarsson, L. and Pukkala, T. (2011). Taper functions for lodgepole pine (Pinus contorta) and Siberian larch (Larix sibirica) in Iceland.
  • Hussain, A., Shahzad, M. K., Burkhart, H. E. and Jiang, L. (2021). Stem taper functions for white birch (Betula platyphylla) and costata birch (Betula costata) in the Xiaoxing’an Mountains, northeast China. Forestry: An International Journal of Forest Research, 94(5), 714-733.
  • Hussain, A., Shahzad, M. K., He, P. and Jiang, L. (2020). Stem taper equations for three major conifer species of Northeast China. Scandinavian Journal of Forest Research, 35(8), 562-576.
  • Jiang, L., Brooks, J. R. and Wang, J. (2005). Compatible taper and volume equations for yellow-poplar in West Virginia. Forest ecology and management, 213(1-3), 399-409.
  • Jordan, L., Berenhaut, K., Souter, R. and Daniels, R. F. (2005). Parsimonious and completely compatible taper, total, and merchantable volume models. Forest science, 51(6), 578-584.
  • Klos, R. J., Wang, G. G., Dang, Q. L. and East, E. W. (2007). Taper equations for five major commercial tree species in Manitoba, Canada. Western Journal of Applied Forestry, 22(3), 163-170.
  • Kozak, A. (1988). A variable-exponent taper equation. Canadian Journal of Forest Research, 18(11), 1363-1368.
  • Kozak, A. (1997). Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Canadian Journal of Forest Research, 27(5), 619-629.
  • Kozak, A. (2004). My last words on taper equations. The Forestry Chronicle, 80(4), 507-515.
  • Kozak, A., Munro, D. D. and Smith, J. H. G. (1969). Taper functions and their application in forest inventory. The Forestry Chronicle, 45(4), 278-283.
  • Li, R. and Weiskittel, A. R. (2010). Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region. Annals of Forest Science, 67(3), 302.
  • Max, T. A. and Burkhart, H. E. (1976). Segmented polynomial regression applied to taper equations. Forest Science, 22(3), 283-289.
  • McTague, J. P. and Bailey, R. L. (1987). Simultaneous total and merchantable volume equations and a compatible taper function for loblolly pine. Canadian Journal of Forest Research, 17(1), 87-92.
  • OGM (2020). Orman Genel Müdürlüğü Resmi İstatistikleri. http://www.ogm.gov.tr/ekutuphane/Sayfalar/Istatistikler.aspx (05.02.2022).
  • Ormerod, D. W. (1973). A simple bole model. The Forestry Chronicle, 49(3), 136-138.
  • Özçelik, R. and Brooks, J. R. (2012). Compatible volume and taper models for economically important tree species of Turkey. Annals of Forest Science, 69(1), 105-118.
  • Özçelik, R. and Cao, Q. V. (2017). Evaluation of fitting and adjustment methods for taper and volume prediction of black pine in Turkey. Forest Science, 63(4), 349-355.
  • Özçelik, R. and Crecente-Campo, F. (2016). Stem taper equations for estimating merchantable volume of Lebanon cedar trees in the Taurus Mountains, Southern Turkey. Forest Science, 62(1), 78.
  • Özçelik, R., Diamantopoulou, M. J., Wiant Jr, H. V. and Brooks, J. R. (2008). Comparative study of standard and modern methods for estimating tree bole volume of three species in Turkey. Forest Products Journal, 58(6), 73.
  • Pancoast, A. D. (2018). Evaluation of Taper and Volume Estimation Techniques for Ponderosa Pine in Eastern Oregon and Eastern Washington.
  • Parresol, B. R., Hotvedt, J. E. and Cao, Q. V. (1987). A volume and taper prediction system for bald cypress. Canadian Journal of Forest Research, 17(3), 250-259.
  • Poudel, K. P., Temesgen, H. and Gray, A. N. (2018). Estimating upper stem diameters and volume of Douglas-fir and Western hemlock trees in the Pacific northwest. Forest Ecosystems, 5(1), 1-12.
  • Rodríguez, F. and Lizarralde, I. (2009, April). Non-destructive measurement techniques for taper equation development. A study case for black pine (Pinus nigra Arn.) in the northern Iberic Range (Spain). In Proceedings of the IUFRO Conference Forest, Wildlife and Wood Sciences for Society Development, Prague, Czech Republic (pp. 16-18).
  • Sakici, O. E., Misir, N., Yavuz, H. and Misir, M. (2008). Stem taper functions for Abies nordmanniana subsp. bornmulleriana in Turkey. Scandinavian Journal of Forest Research, 23(6), 522-533.
  • Sakici, O. E. and Ozdemir, G. (2018). Stem taper estimations with artificial neural networks for mixed Oriental beech and Kazdaği fir stands in Karabük region, Turkey. Cerne, 24, 439-451.
  • SAS Institute Inc. (2008). SAS/ETS® 9.2 User’s guide. SAS Institute Inc. Cary. N.C.
  • Schlaegel, B. E. (1983). Development of a form class taper model for willow oak. Athens, GA: University of Georgia. 69 p (Doctoral dissertation, Ph. D. dissertation. How To Use Volume Tables).
  • Şenyurt, M. and Ercanli, I. (2019). A comparison of artificial neural network models and regression models to predict tree volumes for Crimean Black Pine trees in Cankiri forests. Šumarski list, 143(9-10), 413-423.
  • Tang, X., Pérez-Cruzado, C., Fehrmann, L., Álvarez-González, J. G., Lu, Y. and Kleinn, C. (2016). Development of a compatible taper function and stand-level merchantable volume model for Chinese fir plantations. PloS one, 11(1), e0147610.
  • Williams, M. S. and Reich, R. M. (1997). Exploring the error structure of taper equations. Forest science, 43(3), 378-386.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Orman Endüstri Mühendisliği
Bölüm Research Articles
Yazarlar

Mustafa Turgut 0000-0003-4896-4354

Ramazan Ozçelik 0000-0003-2132-2589

Onur Alkan 0000-0001-5798-3421

Yayımlanma Tarihi 15 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 2

Kaynak Göster

APA Turgut, M., Ozçelik, R., & Alkan, O. (2022). Antalya-Gebiz Yöresi Kızılçam Meşcereleri için Uyumlu Gövde Hacmi ve Gövde Çapı Modelleri. Bartın Orman Fakültesi Dergisi, 24(2), 289-303. https://doi.org/10.24011/barofd.1084729


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com