Genç Kızılçam Biyokütle Denklemleri; Kozağacı Orman İşletme Şefliği Örneği
Yıl 2022,
Cilt: 24 Sayı: 3, 609 - 617, 15.12.2022
Birsen Durkaya
,
Ali Durkaya
,
Gülhan Sayın
Öz
Ormanların karbon depolama kapasitelerine ilişkin hesaplamalar tüm dünyada giderek daha önemli hale gelmiştir. Karbon bildirimlerinde uluslararası kurumlar, orman ekosistemlerinde depolanan karbon miktarlarının envantere dayalı olarak, tam ve kesin olarak belirlenmesini arzu etmektedir. Tüm ülkenin ormanlık alanlarındaki karbon stokunun belirlenmesi için, her ağaç türünün farklı habitatlarda biriktirdiği biyokütle miktarının ve bağladıkları karbon miktarının yöresel olarak belirlenmesi gerekmektedir. Bu çalışmada genç kızılçamlar yöresel olarak dikkate alınarak, Mersin Kozağacı Orman İşletme Şefliği içerisindeki saf kızılçam meşcerelerine ait toprak üstü ve toprak altı biyokütle denklemleri geliştirilmiştir. Çalışmada ayrıca kızılçam için odun yoğunluk oranı ve ibre kuru ağırlık oranı belirlenmiştir.
Teşekkür
Bu çalışmada verilerin araziden elde edilmesinde destek sağlayan Mersin Orman Bölge Müdürlüğü, Bozyazı İşletme Müdürlüğü ve Kozağacı İşletme Şefliği’nin tüm personeline teşekkür ederiz.
Kaynakça
- Aholoukpè, H., Dubos, B., Flori, A., Deleporte, P., Amadji, G., Chotte, J. L., & Blavet, D. (2013). Es-timating aboveground biomass of oil palm: allometric equations for estimating frond biomass. Forest Ecology and Management, 292, 122-129.
- Anon., (2016). Orman Genel Müdürlüğü, Mersin Orman Bölge Müdürlüğü, Bozyazı Orman İşletme Müdürlüğü, Kozağacı Orman İşletme Şefliği Orman Amenajman Planı, 2016-2035.
- Anonim, (2020). Türkiye Orman Varlığı. Erişim adresi: https://www.ogm.gov.tr/tr/ormanlarimiz-site-si/TurkiyeOrmanVarligi/Yayinlar/2020%20T%C3%BCrkiye%20Orman%20Varl%C4%B1%C4%9F%C4%B1.pdf (Erişim tarihi:20.06.2022)
- Bilgili, E., & Kucuk, O. (2009). Estimating above-ground fuel biomass in young Calabrian pine (Pinus brutia Ten.). Energy & Fuels, 23(4), 1797-1800.
- Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363-372.
- De-Miguel, S., Mehtätalo, L., & Durkaya, A. (2014). Developing generalized, calibratable, mixed-effects meta-models for large-scale biomass prediction. Canadian Journal of Forest Research, 44(6), 648-656.
- Durkaya, A., Durkaya, B., & Ünsal, A. (2009). Predicting the above-ground biomass of calabrian pine (Pinus brutia Ten.) stands in Turkey. African Journal of Biotechnology, 8(11).
- Durkaya, A., Durkaya, B., Makineci, E., & Orhan, I. (2015). Aboveground biomass and carbon stora-ge relationship of Turkish pines. Fresenius Environmental Bulletin, 24(11), 3573-3583.
- Durkaya, B. (1998). Construction of biomass tables of oak stands in Zonguldak Forest Enterprize. ZKÜ Grad. Sch. Ap. Nat. Sci., M. Sc. Thesis, 110.
- Durkaya, B., Durkaya, A., & Kaptan, S. (2020). BEF-BCEF calculations for Turkey's important conif-erous species. Bartın Orman Fakültesi Dergisi, 22(3), 1053-1060.
- Durkaya, B., Durkaya, A., Onal, G., & Kaptan, S. (2018). Evaluation of the effects of various factors on aboveground and belowground biomass storage capacity of Rhododendron ponticum. Bosque, 39(1), 95-106.
- Dutca, I., Abrudan, I. V., Stancioiu, P. T., & Blujdea, V. (2010). Biomass conversion and expansion factors for young Norway spruce (Picea abies (L.) Karst.) trees planted on non-forest lands in Eastern Carpathians. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 286-292.
- Eker, M., Poudel, K. P., & Özçelik, R. (2017). Aboveground biomass equations for small trees of bru-tian pine in Turkey to facilitate harvesting and management. Forests, 8(12), 477.
- Eker, M., & Ozcelik, R. (2017). Estimating recoverable fuel wood biomass from small diameter trees in Brutian pine (Pinus brutia Ten.) stands. Fresenius Environmental Bulletin, 26(12A), 8286-8297.
- Güngöroglu, C., Güney, Ç. O., Sari, A., & Serttaş, A. (2018). Predicting crown fuel biomass of Turkish red pine (Pinus brutia Ten.) for the Mediterranean regions of Turkey. Šumarski List, 142(11-12), 601-610.
- IPCC, (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). IGES, Japan. Erişim adresi: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html [Verified 29/10/ 2008].
- Ketterings, Q. M., Coe, R., van Noordwijk, M., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209.
- Mahmood, H., Siddique, M. R. H., Islam, S. M., Abdullah, S. M., Matieu, H., Iqbal, M., & Akhter, M. (2020). Applicability of semi-destructive method to derive allometric model for estimating abo-veground biomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Rese-arch, 31(4), 1235-1245.
- Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in terrest-rial biomes. Global Change Biology, 12(1), 84-96.
- Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., ... & Hasenauer, H. (2016). Comparison of carbon estimation methods for European forests. Forest Ecology and Management, 361, 397-420.
- Poorter, H., Jagodzinski, A. M., Ruiz‐Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., ... & Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208(3), 736-749.
- Porte, A., Trichet, P., Bert, D., & Loustau, D. (2002). Allometric relationships for branch and tree wo-ody biomass of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 158(1-3), 71-83.
- Sakici, O. E., Kucuk, O., & Ashraf, M. I. (2018). Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.). Environmental Mo-nitoring and Assessment, 190(5), 1-10.
- St. Clair, J. B. (1993). Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Science, 39(4), 743-755.
Young Turkish Pine Biomass Equations; Kozağacı Forest Planning Unit Example
Yıl 2022,
Cilt: 24 Sayı: 3, 609 - 617, 15.12.2022
Birsen Durkaya
,
Ali Durkaya
,
Gülhan Sayın
Öz
Calculations of the carbon storage capacities of forests have become increasingly important all over the world. International institutions that make carbon notifications want the amount of carbon stored in forest ecosystems to be determined fully and precisely based on the inventory. In order to determine the carbon stock in forest areas of the whole country, it is necessary to determine locally the amount of biomass accumulated by each tree species in different habitats and the amount of carbon they have bound. In this study, above- and below-ground biomass equations were developed for young red pines belonging to pure red pine stands in Mersin-Kozağacı Forest Planning Unit. In the study, wood density ratio and needle dry weight ratio (LDMC) were also determined for red pine.
Kaynakça
- Aholoukpè, H., Dubos, B., Flori, A., Deleporte, P., Amadji, G., Chotte, J. L., & Blavet, D. (2013). Es-timating aboveground biomass of oil palm: allometric equations for estimating frond biomass. Forest Ecology and Management, 292, 122-129.
- Anon., (2016). Orman Genel Müdürlüğü, Mersin Orman Bölge Müdürlüğü, Bozyazı Orman İşletme Müdürlüğü, Kozağacı Orman İşletme Şefliği Orman Amenajman Planı, 2016-2035.
- Anonim, (2020). Türkiye Orman Varlığı. Erişim adresi: https://www.ogm.gov.tr/tr/ormanlarimiz-site-si/TurkiyeOrmanVarligi/Yayinlar/2020%20T%C3%BCrkiye%20Orman%20Varl%C4%B1%C4%9F%C4%B1.pdf (Erişim tarihi:20.06.2022)
- Bilgili, E., & Kucuk, O. (2009). Estimating above-ground fuel biomass in young Calabrian pine (Pinus brutia Ten.). Energy & Fuels, 23(4), 1797-1800.
- Brown, S. (2002). Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116(3), 363-372.
- De-Miguel, S., Mehtätalo, L., & Durkaya, A. (2014). Developing generalized, calibratable, mixed-effects meta-models for large-scale biomass prediction. Canadian Journal of Forest Research, 44(6), 648-656.
- Durkaya, A., Durkaya, B., & Ünsal, A. (2009). Predicting the above-ground biomass of calabrian pine (Pinus brutia Ten.) stands in Turkey. African Journal of Biotechnology, 8(11).
- Durkaya, A., Durkaya, B., Makineci, E., & Orhan, I. (2015). Aboveground biomass and carbon stora-ge relationship of Turkish pines. Fresenius Environmental Bulletin, 24(11), 3573-3583.
- Durkaya, B. (1998). Construction of biomass tables of oak stands in Zonguldak Forest Enterprize. ZKÜ Grad. Sch. Ap. Nat. Sci., M. Sc. Thesis, 110.
- Durkaya, B., Durkaya, A., & Kaptan, S. (2020). BEF-BCEF calculations for Turkey's important conif-erous species. Bartın Orman Fakültesi Dergisi, 22(3), 1053-1060.
- Durkaya, B., Durkaya, A., Onal, G., & Kaptan, S. (2018). Evaluation of the effects of various factors on aboveground and belowground biomass storage capacity of Rhododendron ponticum. Bosque, 39(1), 95-106.
- Dutca, I., Abrudan, I. V., Stancioiu, P. T., & Blujdea, V. (2010). Biomass conversion and expansion factors for young Norway spruce (Picea abies (L.) Karst.) trees planted on non-forest lands in Eastern Carpathians. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 286-292.
- Eker, M., Poudel, K. P., & Özçelik, R. (2017). Aboveground biomass equations for small trees of bru-tian pine in Turkey to facilitate harvesting and management. Forests, 8(12), 477.
- Eker, M., & Ozcelik, R. (2017). Estimating recoverable fuel wood biomass from small diameter trees in Brutian pine (Pinus brutia Ten.) stands. Fresenius Environmental Bulletin, 26(12A), 8286-8297.
- Güngöroglu, C., Güney, Ç. O., Sari, A., & Serttaş, A. (2018). Predicting crown fuel biomass of Turkish red pine (Pinus brutia Ten.) for the Mediterranean regions of Turkey. Šumarski List, 142(11-12), 601-610.
- IPCC, (2006). IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). IGES, Japan. Erişim adresi: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html [Verified 29/10/ 2008].
- Ketterings, Q. M., Coe, R., van Noordwijk, M., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146(1-3), 199-209.
- Mahmood, H., Siddique, M. R. H., Islam, S. M., Abdullah, S. M., Matieu, H., Iqbal, M., & Akhter, M. (2020). Applicability of semi-destructive method to derive allometric model for estimating abo-veground biomass and carbon stock in the Hill zone of Bangladesh. Journal of Forestry Rese-arch, 31(4), 1235-1245.
- Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in terrest-rial biomes. Global Change Biology, 12(1), 84-96.
- Neumann, M., Moreno, A., Mues, V., Härkönen, S., Mura, M., Bouriaud, O., ... & Hasenauer, H. (2016). Comparison of carbon estimation methods for European forests. Forest Ecology and Management, 361, 397-420.
- Poorter, H., Jagodzinski, A. M., Ruiz‐Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., ... & Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 208(3), 736-749.
- Porte, A., Trichet, P., Bert, D., & Loustau, D. (2002). Allometric relationships for branch and tree wo-ody biomass of Maritime pine (Pinus pinaster Ait.). Forest Ecology and Management, 158(1-3), 71-83.
- Sakici, O. E., Kucuk, O., & Ashraf, M. I. (2018). Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.). Environmental Mo-nitoring and Assessment, 190(5), 1-10.
- St. Clair, J. B. (1993). Family differences in equations for predicting biomass and leaf area in Douglas-fir (Pseudotsuga menziesii var. menziesii). Forest Science, 39(4), 743-755.