Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Water Repellent Chemical (Ruco-DryEco®) Used in The Textile Sector on Some Physical Properties of Wood

Yıl 2023, Cilt: 25 Sayı: 1, 43 - 57, 15.04.2023
https://doi.org/10.24011/barofd.1154796

Öz

The effect of a water repellent chemical used in the textile sector on some physical properties of wood was investigated in this study. Uludağ Fir (Abies bornmülleriana Mattf) and Beech (Fagus Orientalis Lipsky) were used as a wood and a commercial water repellent chemical named Ruco-DryEco® (RD), a fluorocarbon-free water-based product used in the textile industry, was used as a chemical. This chemical is used as an 3% aqueous solution in the textile industry. So, in this study 5% and 10% solution of RD was used. After the treatment with 5% and 10% solutions, the expected water repellency was not achieved and the study was repeated at 50% concentration. Weight percent gain (WPG), swelling effect (SE), water uptake (WU), water repellent efficiency (WRE), volumetric swelling (WS) and anti-swelling efficiency (ASE) values of the woods were determined and, were compared with the values of the untreated control samples. It was determined that, as the concentration of solution increases, WPG and SE values increase. In addition, the increase in impregnation time and the use of binders also cause a relatively small increase in WPG values. On the SE, it was observed that impregnation time was not very effective. The WU of the samples decreased slightly compared to the WU of the control group. The higher the amount of water repellent attached to the material, the lower the rate of WU. WS of all treatment groups was found to be less than that of the control group. However, the effect of the impregnation was found to be less with low concentration solutions. For both wood species, higher ASE values were obtained as solution concentration increased.

Kaynakça

  • Ağırgan, A., Kanat, E., Özek, Z. (2008). Nano partiküllü su iticilik maddeleriyle işlem görmüş pamuk ve polyester kumaşların karşılaştırılması. Tekstil ve Mühendis, 69, 7-13. Access address: https://dergipark.org.tr/tr/download/article-file/137322
  • Bahners, T., Textor, T., Opwis, K., Schollmeyer, E. (2008). Recent approaches to highly hydrophobic textile surfaces. Journal of Adhesion Science and Technology, 22(3-4), 285-309. https://doi.org/10.1163/156856108X295437
  • Bollmus, S., (2011). Biologische und technologische Eigenschaften von Buchenholz nach einer Modifizierung mit 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) [Biological and technological properties of beech wood after modification with 1.3-dimethylol-4.5-dihydroxyethylurea (DMDHEU)]. PhD Thessis, University of Goettingen, Faculty of Forest Sciences and Forest Ecology, Goettingen.
  • Can, A., Sivrikaya, H. (2016). Dimensional stabilization of wood treated with tall oil dissolved in different solvents. Maderas Ciencia y tecnologia, 18 (2), 317-324. Access address: http://dx.doi.org/10.4067/S0718-221X2016005000029
  • Can, A. (2018). Su itici maddeler ile kombine edilmiş bazı emprenye maddelerinin performansının incelenmesi (Doktora Tezi). Access address: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Chen, J., Wang, Y., Cao, J., and Wang. (2020). Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion, Forests, 11, 271. Access address: https://www.mdpi.com/1999-4907/11/3/271
  • Çetin, N.S. ve Özmen, N. (2005). Modification of wood with environmentally friendly chemicals to ımprove decay resistance. J. of Environmental Biology, 26 (4), 735-740.
  • Emmerich, L., Bollmus, S., Militz, H. (2019). Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea) – State of the art, recent research activities and future perspectives. Wood Material Science & Engineering, 14(1), 3-18. Access address: https://doi.org/10.1080/17480272.2017.1417907
  • Galperin, A.S., Kuleshov, G.G., Taraskevich, V.I., Smtov, G.M. (1995). Manufacturing and properties of modified wood: A review of 25 years work. Holzforzchung, 49, 45-50. https://doi.org/10.1515/hfsg.1995.49.1.45
  • Gerhards, C.C. (1982). Effect of moisture content and temperature on the mechanical properties of wood:an analysis of immediate effects. Wood and Fiber Science, 14(1), 4-36. Access address: https://wfs.swst.org/index.php/wfs/article/view/501/501
  • Gökmen, K., Sivrikaya, H. (2021). Physical and Mechanical Properties of Fir and Poplar Subjected to Tall Oil and Vacuum Heat Treatment. Journal of Bartin Faculty of Forestry ,23 (2), 510-519. Access address: https://dergipark.org.tr/tr/pub/barofd/issue/61424/896564 15. Huang K.S., Yang, K.L., Lin, S.J., Lian, W.T. (2007). Antiwrinkle treatment of cotton fabric with a mixed sol of TEOS-TTB/DMDHEU. Journal of Applied Polymer Science, 106, 2559–2564. Access address: https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.25281
  • Koski, A. (2008). Applicability of crude tall oil for wood protection (Doktora Tezi). Access address: http://jultika.oulu.fi/files/isbn9789514287237.pdf
  • Köse Demirel, G., Temiz, A., Jebrane, M., Terziev, N., and Gezer, E. (2018). Micro-distribution, water absorption, and dimensional stability of wood treated with epoxidized plant oils. BioResources, 13(3), 5124-5138. Access address: https://bioresources.cnr.ncsu.edu/resources/micro-distribution-water-absorption-and-dimensional-stability-of-wood-treated-with-epoxidized-plant-oils/
  • Krause, A. (2006). Holzmodifizierung mit N-Methylolvernetzern [Wood modification with cross-linking N-methylol compounds]. Dissertation, University of Goettingen, Faculty of Forest Sciences and Forest Ecology, Goettingen.
  • Kumar, S. (1994). Chemical modification of wood. Wood and Fiber Science, 26 (2), 270-280. Access address: https://wfs.swst.org/index.php/wfs/article/view/1584/1584
  • Küsefoğlu, S. (1998). Ahşap – polimetilmetakrilat kompozit malzemeleri: Üretimi ve fiziksel özellikler. MPM Yayınları, 338.
  • Li, W., Chen, L., Li, Y., Li, X. (2020) Bamboo modification with 1,3-dimethylol-4,5-dihydroxyethyleneurea(DMDHEU) catalyzed by maleic anhydride. Journal of Wood Chemistry and Technology, 40 (2), 126-135. Access address: https://doi.org/10.1080/02773813.2019.1697293
  • Pelit, H., Korkmaz, M., Budakçı, M. (2017). Farklı ahşap malzemelerin bazı fiziksel özelliklerine su itici maddelerin etkileri. 4. Uluslararası Mobilya ve Dekorasyon Kongresi, Düzce, 1027-1036.
  • Rowell, Roger M. Banks, W. B. (1985). Water repellency and dimensional stability of wood. Gen. Tech. Rep. FPL-50. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Ruco-DryEco. [Broşür](2017). Access address: http://www.rudolf-duraner.com.tr
  • Sandberg, D., Kutnar, A., Mantanis, G. (2017). Wood modification technologies - a review. iForest 10, 895-908. Access address: https://iforest.sisef.org/contents/?id=ifor2380-010
  • Sefil, Y. (2010). Thermowood yöntemiyle ısıl işlem uygulanmış göknar ve kayın odunlarının fiziksel ve mekanik özellikleri (Yüksek lisans tezi). Access address: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Sivrikaya, H., Can, A. (2022). Physical and Mechanical Properties and Decay Resistance of Poplar Modified with mDMDHEU. Drvna Industrija. 73 (2), 193-203. Access address: https://doi.org/10.5552/drvind.2022.2118
  • Sivrikaya, H., Can, A., Yaman, B., Palanti, S., Morrell, J.J. (2021). Effect of tallow impregnation on moisture behavior and decay resistance of various wood species. Wood Material Science & Engineering. 16 (4), 260-268, Access address: https://doi.org/10.1080/17480272.2020.1862298
  • Temiz A., Terziev N., Jacobsen B., Eikenes M., (2006). Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. Journal of Applied Polymer Science, 102 (5), 4506-4513. Access address: https://onlinelibrary.wiley.com/doi/abs/10.1002/app.24878
  • Türk Standardları Enstitüsü. (1975a). TS 2470 - Odunda fiziksel ve mekaniksel deneyler için numune alma metodları ve genel özellikler. TSE, Ankara.
  • Türk Standartları Enstitüsü. (1975b). TS 2471 - Odunda, fiziksel ve mekaniksel deneyler için rutubet miktarı tayini. TSE, Ankara.
  • Türk Standartları Enstitüsü. (1975c). TS 2472 - Odunda fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini. TSE, Ankara.
  • Türk Standartları Enstitüsü. (1982). TS 4086 - Odunda hacimsel şişmenin tayini. TSE, Ankara.
  • Var, A.A. (2001). Ahşap malzemede su alımının parafin vaks/bezir yağı karışımıyla azaltılması. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, 2, 97-110.

Tekstil Sektöründe Kullanılan Su İtici Kimyasalların Ahşap Malzemenin Bazı Fiziksel Özelliklerine Etkisi

Yıl 2023, Cilt: 25 Sayı: 1, 43 - 57, 15.04.2023
https://doi.org/10.24011/barofd.1154796

Öz

Bu çalışmada, tekstil sektöründe kullanılan su itici kimyasalların ahşap malzemenin bazı fiziksel özelliklerine etkisi araştırılmıştır. Ağaç malzeme olarak Uludağ göknarı (Abies bornmülleriana Mattf) ve Doğu kayını odunu (Fagus Orientalis Lipsky), kimyasal malzeme olarak tekstil sektöründe kullanılan, florokarbon içermeyen su bazlı bir ürün olan Ruco-DryEco® ticari isimli kimyasal kullanılmıştır. Bu ürün tekstil ürünlerinin işleminde %3 konsantrasyonda kullanılmaktadır. Ağaç malzeme örneklerinin su itici ile emprenyesinde 3 farklı konsantrasyonda çözelti kullanılmıştır. % 5 ve % 10 konsantrasyonda çözeltiler ile yapılan işlem sonrası beklenen su iticiliğin sağlanamaması nedeni ile çalışma %50 konsantrasyonda tekrarlanmıştır. Bu kimyasallar ile muamele edilen numunelerin yüzde ağırlık artışı (YAA), şişirici etki (SE), su alma oranı (SAO), su itici etkinlik (SİE), hacimsel genişleme (HG) ve genişlemeyi önleyici etkinlik (GÖE) değerleri tespit edilmiştir. Elde edilen sonuçlar kontrol grubu örneklerine göre kıyaslanmıştır. Elde edilen verilere göre, çözelti konsantrasyonu arttıkça YAA ve şişirici etki değerleri artmaktadır. Ayrıca kimyasalda bekletme süresinin artışı ve bağlayıcı kullanımı da YAA değerlerinde nispeten az da olsa artışa neden olmaktadır. Şişirici etki üzerinde ise bekleme süresinin çok fazla etkili olmadığı görülmüştür. Örneklerin su alma oranları kontrol grubuna kıyasla bir miktar düşmektedir. Malzemeye tutunan su itici madde miktarı arttıkça su alma oranı da düşmektedir. Su itici etkinlik ise malzemenin suya maruz kalma süresi uzadıkça azalmakta ve işlemin etkisini kaybettiğini göstermektedir. Tüm işlem gruplarının hacimsel genişlemesinin kontrol grubuna oranla daha az olduğu görülmektedir. Ancak düşük konsantrasyonlu çözeltilerle işlemin etkisinin daha az olduğu belirlenmiştir. Her iki ağaç türü için de çözelti konsantrasyonu arttıkça daha yüksek GÖE değerleri elde edilmiştir.

Kaynakça

  • Ağırgan, A., Kanat, E., Özek, Z. (2008). Nano partiküllü su iticilik maddeleriyle işlem görmüş pamuk ve polyester kumaşların karşılaştırılması. Tekstil ve Mühendis, 69, 7-13. Access address: https://dergipark.org.tr/tr/download/article-file/137322
  • Bahners, T., Textor, T., Opwis, K., Schollmeyer, E. (2008). Recent approaches to highly hydrophobic textile surfaces. Journal of Adhesion Science and Technology, 22(3-4), 285-309. https://doi.org/10.1163/156856108X295437
  • Bollmus, S., (2011). Biologische und technologische Eigenschaften von Buchenholz nach einer Modifizierung mit 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) [Biological and technological properties of beech wood after modification with 1.3-dimethylol-4.5-dihydroxyethylurea (DMDHEU)]. PhD Thessis, University of Goettingen, Faculty of Forest Sciences and Forest Ecology, Goettingen.
  • Can, A., Sivrikaya, H. (2016). Dimensional stabilization of wood treated with tall oil dissolved in different solvents. Maderas Ciencia y tecnologia, 18 (2), 317-324. Access address: http://dx.doi.org/10.4067/S0718-221X2016005000029
  • Can, A. (2018). Su itici maddeler ile kombine edilmiş bazı emprenye maddelerinin performansının incelenmesi (Doktora Tezi). Access address: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Chen, J., Wang, Y., Cao, J., and Wang. (2020). Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion, Forests, 11, 271. Access address: https://www.mdpi.com/1999-4907/11/3/271
  • Çetin, N.S. ve Özmen, N. (2005). Modification of wood with environmentally friendly chemicals to ımprove decay resistance. J. of Environmental Biology, 26 (4), 735-740.
  • Emmerich, L., Bollmus, S., Militz, H. (2019). Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea) – State of the art, recent research activities and future perspectives. Wood Material Science & Engineering, 14(1), 3-18. Access address: https://doi.org/10.1080/17480272.2017.1417907
  • Galperin, A.S., Kuleshov, G.G., Taraskevich, V.I., Smtov, G.M. (1995). Manufacturing and properties of modified wood: A review of 25 years work. Holzforzchung, 49, 45-50. https://doi.org/10.1515/hfsg.1995.49.1.45
  • Gerhards, C.C. (1982). Effect of moisture content and temperature on the mechanical properties of wood:an analysis of immediate effects. Wood and Fiber Science, 14(1), 4-36. Access address: https://wfs.swst.org/index.php/wfs/article/view/501/501
  • Gökmen, K., Sivrikaya, H. (2021). Physical and Mechanical Properties of Fir and Poplar Subjected to Tall Oil and Vacuum Heat Treatment. Journal of Bartin Faculty of Forestry ,23 (2), 510-519. Access address: https://dergipark.org.tr/tr/pub/barofd/issue/61424/896564 15. Huang K.S., Yang, K.L., Lin, S.J., Lian, W.T. (2007). Antiwrinkle treatment of cotton fabric with a mixed sol of TEOS-TTB/DMDHEU. Journal of Applied Polymer Science, 106, 2559–2564. Access address: https://onlinelibrary.wiley.com/doi/epdf/10.1002/app.25281
  • Koski, A. (2008). Applicability of crude tall oil for wood protection (Doktora Tezi). Access address: http://jultika.oulu.fi/files/isbn9789514287237.pdf
  • Köse Demirel, G., Temiz, A., Jebrane, M., Terziev, N., and Gezer, E. (2018). Micro-distribution, water absorption, and dimensional stability of wood treated with epoxidized plant oils. BioResources, 13(3), 5124-5138. Access address: https://bioresources.cnr.ncsu.edu/resources/micro-distribution-water-absorption-and-dimensional-stability-of-wood-treated-with-epoxidized-plant-oils/
  • Krause, A. (2006). Holzmodifizierung mit N-Methylolvernetzern [Wood modification with cross-linking N-methylol compounds]. Dissertation, University of Goettingen, Faculty of Forest Sciences and Forest Ecology, Goettingen.
  • Kumar, S. (1994). Chemical modification of wood. Wood and Fiber Science, 26 (2), 270-280. Access address: https://wfs.swst.org/index.php/wfs/article/view/1584/1584
  • Küsefoğlu, S. (1998). Ahşap – polimetilmetakrilat kompozit malzemeleri: Üretimi ve fiziksel özellikler. MPM Yayınları, 338.
  • Li, W., Chen, L., Li, Y., Li, X. (2020) Bamboo modification with 1,3-dimethylol-4,5-dihydroxyethyleneurea(DMDHEU) catalyzed by maleic anhydride. Journal of Wood Chemistry and Technology, 40 (2), 126-135. Access address: https://doi.org/10.1080/02773813.2019.1697293
  • Pelit, H., Korkmaz, M., Budakçı, M. (2017). Farklı ahşap malzemelerin bazı fiziksel özelliklerine su itici maddelerin etkileri. 4. Uluslararası Mobilya ve Dekorasyon Kongresi, Düzce, 1027-1036.
  • Rowell, Roger M. Banks, W. B. (1985). Water repellency and dimensional stability of wood. Gen. Tech. Rep. FPL-50. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
  • Ruco-DryEco. [Broşür](2017). Access address: http://www.rudolf-duraner.com.tr
  • Sandberg, D., Kutnar, A., Mantanis, G. (2017). Wood modification technologies - a review. iForest 10, 895-908. Access address: https://iforest.sisef.org/contents/?id=ifor2380-010
  • Sefil, Y. (2010). Thermowood yöntemiyle ısıl işlem uygulanmış göknar ve kayın odunlarının fiziksel ve mekanik özellikleri (Yüksek lisans tezi). Access address: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Sivrikaya, H., Can, A. (2022). Physical and Mechanical Properties and Decay Resistance of Poplar Modified with mDMDHEU. Drvna Industrija. 73 (2), 193-203. Access address: https://doi.org/10.5552/drvind.2022.2118
  • Sivrikaya, H., Can, A., Yaman, B., Palanti, S., Morrell, J.J. (2021). Effect of tallow impregnation on moisture behavior and decay resistance of various wood species. Wood Material Science & Engineering. 16 (4), 260-268, Access address: https://doi.org/10.1080/17480272.2020.1862298
  • Temiz A., Terziev N., Jacobsen B., Eikenes M., (2006). Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. Journal of Applied Polymer Science, 102 (5), 4506-4513. Access address: https://onlinelibrary.wiley.com/doi/abs/10.1002/app.24878
  • Türk Standardları Enstitüsü. (1975a). TS 2470 - Odunda fiziksel ve mekaniksel deneyler için numune alma metodları ve genel özellikler. TSE, Ankara.
  • Türk Standartları Enstitüsü. (1975b). TS 2471 - Odunda, fiziksel ve mekaniksel deneyler için rutubet miktarı tayini. TSE, Ankara.
  • Türk Standartları Enstitüsü. (1975c). TS 2472 - Odunda fiziksel ve mekaniksel deneyler için birim hacim ağırlığı tayini. TSE, Ankara.
  • Türk Standartları Enstitüsü. (1982). TS 4086 - Odunda hacimsel şişmenin tayini. TSE, Ankara.
  • Var, A.A. (2001). Ahşap malzemede su alımının parafin vaks/bezir yağı karışımıyla azaltılması. Süleyman Demirel Üniversitesi Orman Fakültesi Dergisi Seri: A, 2, 97-110.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kereste, Hamur ve Kağıt
Bölüm Research Articles
Yazarlar

Suat Altun 0000-0002-7080-7489

Veysel Kapçak 0000-0001-8302-0741

Yayımlanma Tarihi 15 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 1

Kaynak Göster

APA Altun, S., & Kapçak, V. (2023). The Effect of Water Repellent Chemical (Ruco-DryEco®) Used in The Textile Sector on Some Physical Properties of Wood. Bartın Orman Fakültesi Dergisi, 25(1), 43-57. https://doi.org/10.24011/barofd.1154796


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com