Araştırma Makalesi
BibTex RIS Kaynak Göster

INVESTIGATION OF THERMAL, DENSITY, AND BIOLOGICAL DEGRADATION PROPERTIES OF FOAM MATERIALS PRODUCED FROM DIFFERENT BIOPOLYMERS

Yıl 2023, Cilt: 25 Sayı: 2, 231 - 239, 15.08.2023
https://doi.org/10.24011/barofd.1274657

Öz

The majority of foam materials used for insulation purposes are produced from petrochemical-derived raw materials such as polystyrene, polyurethane, and polyphenol. It is known that these materials have problems such as being harmful to human and environmental health compared to their natural alternatives and having low recyclability. In order to reduce this negative situation, the production and use of bio-based foam materials have attracted attention in recent years due to their positive properties in terms of environmental and human health. In this study, the density, thermal conductivity, and degradation properties of foam materials produced by adding different bio polymers (guar gum, wheat gluten, and xanthan gum) to a mixture of cellulose and citric acid were investigated. The foams were produced by a simple and fast procedure that contained a mixture of bio polymer, cellulose, and citric acid and dried in the oven. Depending on the bio polymer used in the study, the density of the foam material was found to vary between 0,053 g/cm3 and 0,245 g/cm3. The thermal conductivity coefficient of the foam materials ranged from 0,0354 W/mK to 0,0939 W/mK, and it was determined that these values were comparable to other insulation materials such as glass wool, stone wool, and polyurethane. A weight loss of between 40,15% and 48.,5% occurred in the produced foam materials after a period of 30 days. The results showed that the type of bio polymer added to the mixture of cellulose and citric acid was important in determining the density and thermal conductivity values of the produced foam materials. Additionally, it is thought that the produced foam material could be a more environmentally friendly and sustainable alternative to traditional foam materials.

Kaynakça

  • Abdo, S. M., Youssef, A. M., El-Liethy, M. A. and Ali, G. H. (2023). Preparation of simple biodegradable, nontoxic, and antimicrobial PHB/PU/CuO bionanocomposites for safely use as bioplastic material packaging. Biomass Conversion and Biorefinery, 1-11.
  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.
  • Borkotoky, S. S., Chakraborty, G. and Katiyar, V. (2018). Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams. International Journal Of Biological Macromolecules, 118, 1518-1531.
  • Ergün, M. E. (2023). Activated Carbon and Cellulose-reinforced Biodegradable Chitosan Foams. BioResources, 18(1), 1215-1231.
  • Ergün, M. E., Özen E,., Yıldırım, N. and Dalkılıç, B. (2020). Manufacture of wood fiber reinforced polyvinyl acetate rigid foams. Ormancılık Araştırma Dergisi, 7(2), 104-112.
  • Gautam, R., Bassi, A. S. and Yanful, E. K. (2007). A review of biodegradation of synthetic plastic and foams. Applied Biochemistry And Biotechnology, 141, 85-108.
  • Han, J. H., Lee, J., Kim, S. K., Kang, D., Park, H. B. and Shim, J. K. (2023). Impact of the Amylose/Amylopectin Ratio of Starch-Based Foams on Foaming Behavior, Mechanical Properties, and Thermal Insulation Performance. ACS Sustainable Chemistry & Engineering, 11(7), 2968-2977.
  • Hassan, M. M., Tucker, N. and Le Guen, M. J. (2020). Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydrate Polymers, 230, 115675.
  • Karimi, M., Heuchel, M., Weigel, T., Schossig, M., Hofmann, D. and Lendlein, A. (2012). Formation and size distribution of pores in poly (ɛ-caprolactone) foams prepared by pressure quenching using supercritical CO2. The Journal of Supercritical Fluids, 61, 175-190.
  • Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability, 59(1-3), 81-84.
  • Kymäläinen, H. R. and Sjöberg, A. M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment, 43(7), 1261-1269.
  • Liao, J., Luan, P., Zhang, Y., Chen, L., Huang, L., Mo, L., ... and Xiong, Q. (2022). A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. Journal of Environmental Chemical Engineering, 10(3), 107788.
  • Liao, J., Luan, P., Zhang, Y., Chen, L., Huang, L., Mo, L., ... and Xiong, Q. (2022). A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. Journal of Environmental Chemical Engineering, 10(3), 107788.
  • Lujan, L., Goñi, M. L. and Martini, R. E. (2022). Cellulose–Chitosan Biodegradable Materials for Insulating Applications. ACS Sustainable Chemistry & Engineering, 10(36), 12000-12008.
  • Mudgil, D., Barak, S. and Khatkar, B. S. (2014). Guar gum: processing, properties and food applications—a review. Journal of Food Science And Technology, 51, 409-418.
  • Neugebauer, A., Chen, K., Tang, A., Allgeier, A., Glicksman, L. R. and Gibson, L. J. (2014). Thermal conductivity and characterization of compacted, granular silica aerogel. Energy and Buildings, 79, 47-57.
  • Özen, E., Yıldırım, N., Dalkilic, B. and Ergun, M. E. (2021). Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas. Ciencia y Tecnología, 23(26).1-10
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1), 77-86.
  • Santacruz-Vázquez, V., Santacruz-Vázquez, C. and Laguna Cortés, J. O. (2015). Physical characterization of freeze-dried foam prepared from aloe vera gel and guar gum. Vitae, 22(2), 75-86.
  • Shen, Z., Kwon, S., Lee, H. L., Toivakka, M. and Oh, K. (2022). Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage. International Journal of Biological Macromolecules, 222, 3001-3013.
  • Simpson, A., Rattigan, I. G., Kalavsky, E. and Parr, G. (2020). Thermal conductivity and conditioning of grey expanded polystyrene foams. Cellular Polymers, 39(6), 238-262.
  • Palaniraj, A. and Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1-12.
  • Temiz, H. ve Yeşilsu, A. F. (2006). Bitkisel protein kaynaklı yenilebilir film ve kaplamalar. Gıda Teknolojisi Dergisi, 2, 41-50.
  • Tian, K. and Bilal, M. (2020). Research progress of biodegradable materials in reducing environmental pollution. Abatement of Environmental Pollutants, 313-330.
  • Wang, B., Qi, Z., Chen, X., Sun, C., Yao, W., Zheng, H., ... and Zhang, Y. (2022). Preparation and mechanism of lightweight wood fiber/poly (lactic acid) composites. International Journal of Biological Macromolecules, 217, 792-802.
  • Wei, S., Yiqiang, C., Yunsheng, Z. and Jones, M. R. (2013). Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials, 47, 1278-1291.
  • Yıldırım, N. (2018). Performance Comparison of Bio-based Thermal Insulation Foam Board with Petroleum-based Foam Boards on the Market. BioResources, 13(2), 3395-3403.
  • Yıldırım, N., Özen, E., Ergün, M. E. and Dalkılıç, B. (2022). A Study on Physical, Morphological and Antibacterial Properties of Bio Polymers Reinforced Polyvinyl Acetate Foams. Materials Research, 25, e20210579.
  • Zhao, L., Yang, G., Shen, C., Mao, Z., Wang, B., Sui, X. and Feng, X. (2022). Dual-functional phase change composite based on copper plated cellulose aerogel. Composites Science and Technology, 227, 109615.

Farklı Biyo Polimerlerden Üretilen Köpük Malzemelerin Termal, Yoğunluk ve Biyolojik Bozunma Özelliklerinin İncelenmesi

Yıl 2023, Cilt: 25 Sayı: 2, 231 - 239, 15.08.2023
https://doi.org/10.24011/barofd.1274657

Öz

Yalıtım amaçlı kullanılan köpük malzemelerin büyük bir çoğunluğu polistren, poliüretan ve polifenol gibi petrokimya kaynaklı hammaddelerden üretilmektedir. Bu malzemelerin doğal alternatiflerine kıyasla insan ve çevre sağlığı açısından zararlı ve geri dönüştürülebilirliğinin düşük olması gibi sorunlara sahip olduğu bilinmektedir. Bu olumsuz durumu azaltmak amacıyla son yıllarda biyobazlı köpük malzemelerin üretimi ve kullanımı çevre ve insan sağlığı açısından sahip olduğu olumlu özellikler nedeniyle ilgi görmektedir. Bu çalışmada, selüloz ve sitrik asit karışımına farklı biyo polimerlerin (guar sakızı, buğday gluteni ve ksantan sakızı) eklenmesi ile üretilen köpük malzemelerin yoğunluk, termal iletkenlik ve biyolojik bozunma özellikleri incelenmiştir. Köpükler, biyo polimer, selüloz ve sitrik asit karışımını içeren basit ve hızlı bir prosedür ile üretilerek etüvde kurutulmuştur. Çalışmada kullanılan biyo polimere bağlı olarak elde edilen köpük malzeme yoğunluğunun 0,053 g/cm3 ile 0,245 g/cm3 arasında değiştiği belirlenmiştir. Köpük malzemelerin termal iletkenlik katsayısı, 0,0354 W/mK ile 0,0939 W/mK arasında değişmiş, elde edilen bu değerlerin cam yünü, taş yünü, poliüretan gibi diğer yalıtım malzemeleri ile karşılaştırılabilir olduğu tespit edilmiştir. Üretilen köpük malzemelerde 30 günlük süre sonunda %40,15 ile %48,45 arasında ağırlık kaybı meydana gelmiştir. Sonuçlar selüloz ve sitrik asit karışımına farklı biyo polimerler eklenmesi ile üretilen köpük malzemelerin yoğunluk ve termal iletkenlik değerleri üzerinde biyo polimer türünün önemli olduğunu göstermiştir. Ayrıca üretilen bu köpük malzemenin geleneksel köpük malzemelere göre daha çevre dostu ve sürdürülebilir bir alternatif olabileceği düşünülmektedir.

Kaynakça

  • Abdo, S. M., Youssef, A. M., El-Liethy, M. A. and Ali, G. H. (2023). Preparation of simple biodegradable, nontoxic, and antimicrobial PHB/PU/CuO bionanocomposites for safely use as bioplastic material packaging. Biomass Conversion and Biorefinery, 1-11.
  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353-366.
  • Borkotoky, S. S., Chakraborty, G. and Katiyar, V. (2018). Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams. International Journal Of Biological Macromolecules, 118, 1518-1531.
  • Ergün, M. E. (2023). Activated Carbon and Cellulose-reinforced Biodegradable Chitosan Foams. BioResources, 18(1), 1215-1231.
  • Ergün, M. E., Özen E,., Yıldırım, N. and Dalkılıç, B. (2020). Manufacture of wood fiber reinforced polyvinyl acetate rigid foams. Ormancılık Araştırma Dergisi, 7(2), 104-112.
  • Gautam, R., Bassi, A. S. and Yanful, E. K. (2007). A review of biodegradation of synthetic plastic and foams. Applied Biochemistry And Biotechnology, 141, 85-108.
  • Han, J. H., Lee, J., Kim, S. K., Kang, D., Park, H. B. and Shim, J. K. (2023). Impact of the Amylose/Amylopectin Ratio of Starch-Based Foams on Foaming Behavior, Mechanical Properties, and Thermal Insulation Performance. ACS Sustainable Chemistry & Engineering, 11(7), 2968-2977.
  • Hassan, M. M., Tucker, N. and Le Guen, M. J. (2020). Thermal, mechanical and viscoelastic properties of citric acid-crosslinked starch/cellulose composite foams. Carbohydrate Polymers, 230, 115675.
  • Karimi, M., Heuchel, M., Weigel, T., Schossig, M., Hofmann, D. and Lendlein, A. (2012). Formation and size distribution of pores in poly (ɛ-caprolactone) foams prepared by pressure quenching using supercritical CO2. The Journal of Supercritical Fluids, 61, 175-190.
  • Katzbauer, B. (1998). Properties and applications of xanthan gum. Polymer Degradation and Stability, 59(1-3), 81-84.
  • Kymäläinen, H. R. and Sjöberg, A. M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment, 43(7), 1261-1269.
  • Liao, J., Luan, P., Zhang, Y., Chen, L., Huang, L., Mo, L., ... and Xiong, Q. (2022). A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. Journal of Environmental Chemical Engineering, 10(3), 107788.
  • Liao, J., Luan, P., Zhang, Y., Chen, L., Huang, L., Mo, L., ... and Xiong, Q. (2022). A lightweight, biodegradable, and recyclable cellulose-based bio-foam with good mechanical strength and water stability. Journal of Environmental Chemical Engineering, 10(3), 107788.
  • Lujan, L., Goñi, M. L. and Martini, R. E. (2022). Cellulose–Chitosan Biodegradable Materials for Insulating Applications. ACS Sustainable Chemistry & Engineering, 10(36), 12000-12008.
  • Mudgil, D., Barak, S. and Khatkar, B. S. (2014). Guar gum: processing, properties and food applications—a review. Journal of Food Science And Technology, 51, 409-418.
  • Neugebauer, A., Chen, K., Tang, A., Allgeier, A., Glicksman, L. R. and Gibson, L. J. (2014). Thermal conductivity and characterization of compacted, granular silica aerogel. Energy and Buildings, 79, 47-57.
  • Özen, E., Yıldırım, N., Dalkilic, B. and Ergun, M. E. (2021). Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas. Ciencia y Tecnología, 23(26).1-10
  • Papadopoulos, A. M. (2005). State of the art in thermal insulation materials and aims for future developments. Energy and Buildings, 37(1), 77-86.
  • Santacruz-Vázquez, V., Santacruz-Vázquez, C. and Laguna Cortés, J. O. (2015). Physical characterization of freeze-dried foam prepared from aloe vera gel and guar gum. Vitae, 22(2), 75-86.
  • Shen, Z., Kwon, S., Lee, H. L., Toivakka, M. and Oh, K. (2022). Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage. International Journal of Biological Macromolecules, 222, 3001-3013.
  • Simpson, A., Rattigan, I. G., Kalavsky, E. and Parr, G. (2020). Thermal conductivity and conditioning of grey expanded polystyrene foams. Cellular Polymers, 39(6), 238-262.
  • Palaniraj, A. and Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1-12.
  • Temiz, H. ve Yeşilsu, A. F. (2006). Bitkisel protein kaynaklı yenilebilir film ve kaplamalar. Gıda Teknolojisi Dergisi, 2, 41-50.
  • Tian, K. and Bilal, M. (2020). Research progress of biodegradable materials in reducing environmental pollution. Abatement of Environmental Pollutants, 313-330.
  • Wang, B., Qi, Z., Chen, X., Sun, C., Yao, W., Zheng, H., ... and Zhang, Y. (2022). Preparation and mechanism of lightweight wood fiber/poly (lactic acid) composites. International Journal of Biological Macromolecules, 217, 792-802.
  • Wei, S., Yiqiang, C., Yunsheng, Z. and Jones, M. R. (2013). Characterization and simulation of microstructure and thermal properties of foamed concrete. Construction and Building Materials, 47, 1278-1291.
  • Yıldırım, N. (2018). Performance Comparison of Bio-based Thermal Insulation Foam Board with Petroleum-based Foam Boards on the Market. BioResources, 13(2), 3395-3403.
  • Yıldırım, N., Özen, E., Ergün, M. E. and Dalkılıç, B. (2022). A Study on Physical, Morphological and Antibacterial Properties of Bio Polymers Reinforced Polyvinyl Acetate Foams. Materials Research, 25, e20210579.
  • Zhao, L., Yang, G., Shen, C., Mao, Z., Wang, B., Sui, X. and Feng, X. (2022). Dual-functional phase change composite based on copper plated cellulose aerogel. Composites Science and Technology, 227, 109615.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomateryaller
Bölüm Research Articles
Yazarlar

Mehmet Emin Ergün 0000-0002-9938-7561

İsmail Özlüsoylu 0000-0002-0391-4794

Erken Görünüm Tarihi 13 Temmuz 2023
Yayımlanma Tarihi 15 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 25 Sayı: 2

Kaynak Göster

APA Ergün, M. E., & Özlüsoylu, İ. (2023). Farklı Biyo Polimerlerden Üretilen Köpük Malzemelerin Termal, Yoğunluk ve Biyolojik Bozunma Özelliklerinin İncelenmesi. Bartın Orman Fakültesi Dergisi, 25(2), 231-239. https://doi.org/10.24011/barofd.1274657


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com