Impact test performance of marine sandwich composites with grooved-PVC foam
Yıl 2016,
Cilt: 18 Sayı: 2, 104 - 115, 21.12.2016
Fatih Balıkoğlu
,
T. Kerem Demircioğlu
,
Mustafa Yıldız
,
Nurettin Arslan
Öz
In this study, charpy
impact test results of marine sandwich composites have been reported. Impact
tests have been conducted on the sandwich samples with two different stacking
sequences. The amount of absorbed energy has been determined after
repeated-impact and impact tests. Impact loads were applied to both sides of
sandwich samples. The performance of the repeated-impacted sandwich samples
with [± 45] intermediate layers was higher than samples having only plain
[0/90] plies. Samples with cross-grooved PVC foam have failed at high impact
energy values compared to samples with plain PVC foam. Following the
repeated-impact tests, it has been observed that the amount of absorbed energy
has decreased linearly. Using cross-grooved PVC foam has led to an increase in
the impact performance due to resin columns supporting the sandwich structure.
The impact loads applied at different energy levels caused different damage
modes have been reported.
Kaynakça
- [1] Vinson, J.R., Sandwich structures. Applied Mechanics Reviews, 54, 3, 201–14, (2001).
- [2] Abrate, S., Localized impact on sandwich structures with laminated facings. Applied Mechanics Reviews, 50, 2, 69–82, (1997).
- [3] Abrate S., Impact on composite structures. Cambridge UK: Cambridge Press, (1998).
- [4] Srivastava, V. K., Impact behaviour of sandwich GFRP-Foam-GFRP, Journal of Composite Materials, 2, 4, 63-66, (2012).
- [5] Sevkat, E., Liaw, B., ve Delale, F., Drop-weight impact response of hybrid composites impacted by impactor of various geometries, Materials and Design, 52, 67-77, (2013).
- [6] Wang, J., Waas, A.M., ve Wang, H., Experimental study on the low-velocity impact behavior of foam-core sandwich panels. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1701, (2012).
- [7] Mitrevski, T., Marshall, I.H., ve Thomson, R., The influence of impactor shape on the damage to composite laminates, Composite Structures, 76 ,1–2, 116-122, (2006).
- [8] Anderson, T., ve Madenci, E., Experimental investigation of low-velocity impact characteristics of sandwich composites, Composite Structures, 50, 3, 239-247, (2000).
- [9] Wu, X.Q., ve Xia, F., Work on low-velocity impact properties of foam sandwich composites with various face sheets, Journal of Reinforced Plastics and Composites, 29, (2009).
- [10] Xia, F., ve Wu, X.Q., Work on impact properties of foam sandwich composites with different structure, Journal of Sandwich Structures and Materials, 12, 1, 47-62, (2010).
- [11] Atas, C., ve Potoğlu, U., The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores, Journal of Sandwich Structures and Materials, 18, 2, 215-228, (2016).
- [12] Gustin, J., Joneson, A., Mahinfalah, M., ve Stone, J., Low velocity impact of combination Kevlar/carbon fiber sandwich composites, Composite Structures, 69, 4, 396-406, (2005).
- [13] Jedari S.S., Sadighi, M., Shakeri, M., ve Moeinfar M., An investigation on low velocity impact response of multilayer sandwich composite structures, The Scientific World Journal, http://dx.doi.org/10.1155/2013/175090, (2013).
- [14] Jiang, D., ve Shu, D., Local displacement of core in two-layer sandwich composite structures subjected to low velocity impact, Composite Structures, 71, 1, 53-60, (2005).
- [15] Mamalis, A.G., Spentzas, K.N., Pantelelis, N.G., Manolakos, D.E., ve Ioannidis, M.B., A new hybrid concept for sandwich structures, Composite Structures, 83, 4, 335-340, (2008).
- [16] Hazizan, Md. A., ve Cantwell, W.J., The low velocity impact response of foam-based sandwich structures, Composites Part B: Engineering, 33, 3, 193-204, (2002).
- [17] Atas, C., ve Sevim, C., On the impact response of sandwich composites with cores of balsa wood and PVC foam, Composite Structures, 93, 1, (2010).
- [18] Torre L., ve Kenny, J.M., Impact testing and simulation of composite sandwich structures for civil transportation, Composite Structures, 50, 3, 257-267, (2000).
- [19] Schubel, P.M., Luo, J.J., ve Daniel, I.M., Low velocity impact behavior of composite sandwich panels, Composites Part A: Applied Science and Manufacturing, 36, 10, 1389-1396, (2005).
Oluklu PVC köpük içeren denizel sandviç kompozitlerin darbe test performansları
Yıl 2016,
Cilt: 18 Sayı: 2, 104 - 115, 21.12.2016
Fatih Balıkoğlu
,
T. Kerem Demircioğlu
,
Mustafa Yıldız
,
Nurettin Arslan
Öz
Bu çalışmada, denizel sandviç kompozitlerin charpy deney test
sonuçlarına yer verilmiştir. Darbe testleri farklı iki laminasyon planına sahip
denizel sandviç kompozit numunelere uygulanmıştır. Ön darbe ve ön darbesiz
testler neticesinde sandviç numunelerin absorbe ettikleri enerji miktarları
belirlenmiştir. Darbe yükleri numunelerin borda içi (ince) ve borda dışı
(kalın) taraflarına uygulanmıştır. ±45 elyaf ara tabaka içeren sandviç
numunelerin darbe performansları, sadece 0/90 elyaf içeren numunelere kıyasla ön
darbeli testlerde yüksek çıkmıştır. Oluklu PVC köpük içeren numuneler, düz PVC
içerenlere kıyasla yüksek darbe enerjisi değerlerinde hasara uğramıştır. Ön
darbe testleri sonrasında absorbe edilen enerji miktarlarının lineer olarak
azaldığı gözlenmiştir. Oluklu PVC içeren sandviç numunelerde reçine sütunlar
yapıya destek olarak darbe performanslarının artışını sağlamıştır. Farklı
enerji seviyelerinde uygulanan darbe yükleri sonucu oluşan farklı hasar durumları
rapor edilmiştir.
Kaynakça
- [1] Vinson, J.R., Sandwich structures. Applied Mechanics Reviews, 54, 3, 201–14, (2001).
- [2] Abrate, S., Localized impact on sandwich structures with laminated facings. Applied Mechanics Reviews, 50, 2, 69–82, (1997).
- [3] Abrate S., Impact on composite structures. Cambridge UK: Cambridge Press, (1998).
- [4] Srivastava, V. K., Impact behaviour of sandwich GFRP-Foam-GFRP, Journal of Composite Materials, 2, 4, 63-66, (2012).
- [5] Sevkat, E., Liaw, B., ve Delale, F., Drop-weight impact response of hybrid composites impacted by impactor of various geometries, Materials and Design, 52, 67-77, (2013).
- [6] Wang, J., Waas, A.M., ve Wang, H., Experimental study on the low-velocity impact behavior of foam-core sandwich panels. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1701, (2012).
- [7] Mitrevski, T., Marshall, I.H., ve Thomson, R., The influence of impactor shape on the damage to composite laminates, Composite Structures, 76 ,1–2, 116-122, (2006).
- [8] Anderson, T., ve Madenci, E., Experimental investigation of low-velocity impact characteristics of sandwich composites, Composite Structures, 50, 3, 239-247, (2000).
- [9] Wu, X.Q., ve Xia, F., Work on low-velocity impact properties of foam sandwich composites with various face sheets, Journal of Reinforced Plastics and Composites, 29, (2009).
- [10] Xia, F., ve Wu, X.Q., Work on impact properties of foam sandwich composites with different structure, Journal of Sandwich Structures and Materials, 12, 1, 47-62, (2010).
- [11] Atas, C., ve Potoğlu, U., The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores, Journal of Sandwich Structures and Materials, 18, 2, 215-228, (2016).
- [12] Gustin, J., Joneson, A., Mahinfalah, M., ve Stone, J., Low velocity impact of combination Kevlar/carbon fiber sandwich composites, Composite Structures, 69, 4, 396-406, (2005).
- [13] Jedari S.S., Sadighi, M., Shakeri, M., ve Moeinfar M., An investigation on low velocity impact response of multilayer sandwich composite structures, The Scientific World Journal, http://dx.doi.org/10.1155/2013/175090, (2013).
- [14] Jiang, D., ve Shu, D., Local displacement of core in two-layer sandwich composite structures subjected to low velocity impact, Composite Structures, 71, 1, 53-60, (2005).
- [15] Mamalis, A.G., Spentzas, K.N., Pantelelis, N.G., Manolakos, D.E., ve Ioannidis, M.B., A new hybrid concept for sandwich structures, Composite Structures, 83, 4, 335-340, (2008).
- [16] Hazizan, Md. A., ve Cantwell, W.J., The low velocity impact response of foam-based sandwich structures, Composites Part B: Engineering, 33, 3, 193-204, (2002).
- [17] Atas, C., ve Sevim, C., On the impact response of sandwich composites with cores of balsa wood and PVC foam, Composite Structures, 93, 1, (2010).
- [18] Torre L., ve Kenny, J.M., Impact testing and simulation of composite sandwich structures for civil transportation, Composite Structures, 50, 3, 257-267, (2000).
- [19] Schubel, P.M., Luo, J.J., ve Daniel, I.M., Low velocity impact behavior of composite sandwich panels, Composites Part A: Applied Science and Manufacturing, 36, 10, 1389-1396, (2005).