Araştırma Makalesi
BibTex RIS Kaynak Göster

Some new properties on N semigroups

Yıl 2024, Cilt: 26 Sayı: 1, 180 - 187, 19.01.2024
https://doi.org/10.25092/baunfbed.1299271

Öz

In this study we first show that  satisfies two important homological properties, namely Rees short exact sequence an d short five lemma. In addition, by defining inversive semigroup varieties of  we prove that strictly inverse semigroup  is isomorphic to the spined product of (C)-inversive semigroup and the idempotent semigroup of . Moreover, we give some consequences of the results to make a detailed classification over . It has been recently defined a new semigroup  based on Rees matrix and completely 0-simple semigroups. Further, it has been also proved finiteness conditions and the existence of some fundamental properties over .

Kaynakça

  • Akgüneş N. Some graph parameters on the strong product of monogenic semigroup graphs. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (1): 412-420, (2018).
  • Ciric M, Bogdanovic CS. Spined products of some semigroups. Proceedings of the Japan Academy Ser. A, Mathematical Sciences, 69(9): 357-362, (1993).
  • Chen Y, Shum KP. Rees short exact sequence of S-systems. Semigroup Forum, 65: 141-148, (2002).
  • Clifford AH, Preston GB. The Algebraic Theory of Semigroups, Volume I. American Mathematical Society second edition (1961).
  • Howie JM. Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995).
  • Jafari M, Golchin A, Saany HM. Rees short exact sequence and flatness properties. Semigroup Forum, 99: 32–46, (2019).
  • Kimura N. The structure of idempotent semigroups I. Pacific Journal of Mathematics, 8(2): 257-275, (1958).
  • Luo Y, Fan X, Li X. Regular congruences on an E-inversive semigroup. Semigroup Forum, 76: 107-123, (2008).
  • Mitsch H. Introduction to E-inversive semigroups. Semigroups,114-135,(2000).
  • Nagy A. Externally commutative semigroups. In: Special Classes of Semigroups. Advances in Mathematics, vol 1. Springer, Boston, MA 2001.
  • Ozalan NU, Cevik AS, Karpuz EG. A new semigroup obtained via known ones. Asian-European Journal of Mathematics, 12(6), (2019).
  • Yamada M. Strictly inversive semigroups. Bulletin of Shimane University (Natural Science); 13: 128-138, (1963).
  • Wazzan SA. New properties over a new type of wreath products on monoids. Advances in Pure Mathematics, 9: 629-636, (2019)
  • Wazzan SA. Zappa-Szep products of semigroups. Applied Mathematics, 6: 1047-1068, (2015).

N yarıgrubu üzerinde bazı yeni özellikler

Yıl 2024, Cilt: 26 Sayı: 1, 180 - 187, 19.01.2024
https://doi.org/10.25092/baunfbed.1299271

Öz

Bu çalışmada ilk olarak ' nin iki önemli homolojik özelliği, yani Rees kısa tam dizisi ve kısa beşli lemmayı sağladığı gösterilmiştir. Ek olarak, 'nin ters yarı grup çeşitlerini tanımlayarak, kesin olarak ters yarıgrup  'nın (C)-ters yarıgrup ve 'nın idempotent yarıgrubunun (spined) döndürülmüş çarpımına izomorfik olduğu kanıtlanmıştır. Ayrıca,  üzerinden ayrıntılı bir sınıflandırma yapmak için bazı sonuçlar verilmiştir. Son zamanlarda Rees matrisine ve tam 0-basit yarı gruplara dayalı yeni bir yarı grup olan  tanımlanmıştır. Dahası  üzerinde bazı temel özelliklerin ve sonluluk koşullarının varlığı da kanıtlanmıştır.

Kaynakça

  • Akgüneş N. Some graph parameters on the strong product of monogenic semigroup graphs. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20 (1): 412-420, (2018).
  • Ciric M, Bogdanovic CS. Spined products of some semigroups. Proceedings of the Japan Academy Ser. A, Mathematical Sciences, 69(9): 357-362, (1993).
  • Chen Y, Shum KP. Rees short exact sequence of S-systems. Semigroup Forum, 65: 141-148, (2002).
  • Clifford AH, Preston GB. The Algebraic Theory of Semigroups, Volume I. American Mathematical Society second edition (1961).
  • Howie JM. Fundamentals of Semigroup Theory. Clarendon Press, Oxford (1995).
  • Jafari M, Golchin A, Saany HM. Rees short exact sequence and flatness properties. Semigroup Forum, 99: 32–46, (2019).
  • Kimura N. The structure of idempotent semigroups I. Pacific Journal of Mathematics, 8(2): 257-275, (1958).
  • Luo Y, Fan X, Li X. Regular congruences on an E-inversive semigroup. Semigroup Forum, 76: 107-123, (2008).
  • Mitsch H. Introduction to E-inversive semigroups. Semigroups,114-135,(2000).
  • Nagy A. Externally commutative semigroups. In: Special Classes of Semigroups. Advances in Mathematics, vol 1. Springer, Boston, MA 2001.
  • Ozalan NU, Cevik AS, Karpuz EG. A new semigroup obtained via known ones. Asian-European Journal of Mathematics, 12(6), (2019).
  • Yamada M. Strictly inversive semigroups. Bulletin of Shimane University (Natural Science); 13: 128-138, (1963).
  • Wazzan SA. New properties over a new type of wreath products on monoids. Advances in Pure Mathematics, 9: 629-636, (2019)
  • Wazzan SA. Zappa-Szep products of semigroups. Applied Mathematics, 6: 1047-1068, (2015).
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebir ve Sayı Teorisi
Bölüm Araştırma Makalesi
Yazarlar

Nurten Urlu Özalan 0000-0002-3022-350X

Erken Görünüm Tarihi 6 Ocak 2024
Yayımlanma Tarihi 19 Ocak 2024
Gönderilme Tarihi 18 Mayıs 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 26 Sayı: 1

Kaynak Göster

APA Urlu Özalan, N. (2024). Some new properties on N semigroups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 180-187. https://doi.org/10.25092/baunfbed.1299271
AMA Urlu Özalan N. Some new properties on N semigroups. BAUN Fen. Bil. Enst. Dergisi. Ocak 2024;26(1):180-187. doi:10.25092/baunfbed.1299271
Chicago Urlu Özalan, Nurten. “Some New Properties on N Semigroups”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 1 (Ocak 2024): 180-87. https://doi.org/10.25092/baunfbed.1299271.
EndNote Urlu Özalan N (01 Ocak 2024) Some new properties on N semigroups. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 180–187.
IEEE N. Urlu Özalan, “Some new properties on N semigroups”, BAUN Fen. Bil. Enst. Dergisi, c. 26, sy. 1, ss. 180–187, 2024, doi: 10.25092/baunfbed.1299271.
ISNAD Urlu Özalan, Nurten. “Some New Properties on N Semigroups”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (Ocak 2024), 180-187. https://doi.org/10.25092/baunfbed.1299271.
JAMA Urlu Özalan N. Some new properties on N semigroups. BAUN Fen. Bil. Enst. Dergisi. 2024;26:180–187.
MLA Urlu Özalan, Nurten. “Some New Properties on N Semigroups”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 1, 2024, ss. 180-7, doi:10.25092/baunfbed.1299271.
Vancouver Urlu Özalan N. Some new properties on N semigroups. BAUN Fen. Bil. Enst. Dergisi. 2024;26(1):180-7.