Araştırma Makalesi
BibTex RIS Kaynak Göster

Bankaların Finansal Başarısızlıklarının İncelenmesinde Makine Öğrenme Tekniklerinin Karşılaştırılması

Yıl 2016, , 291 - 304, 01.12.2016
https://doi.org/10.31795/baunsobed.645223

Öz

Bankalarda meydana gelecek olan bir finansal başarısızlık sonuçlar bakımından dikkate alındığında ekonomik ve sosyolojik olarak önem arz etmektedir. Makine öğrenme tekniklerinden olan Destek Vektör Makineleri DVM ve Yapay Sinir Ağları YSA finansal başarısızlıklar konusunda erken uyarı sistemi olarak kullanılmıştır. Örnek olay olarak 30 özel sermayeli bankanın beş yıllık finansal oran verilerinden yararlanılmıştır. Yapılan analiz sonuçlarına göre destek vektör makineleri yöntemi yapay sinir ağları yöntemine göre bankalardaki finansal başarısızlıkların değerlendirilmesinde erken uyarı sistemi olarak daha iyi bir sınıflandırıcı olduğu sonucuna ulaşılmıştır

Kaynakça

  • Abe, S. (2005). Support Vector Machines For Pattern Classification. London: Springer.
  • Aktaş, R., Doğanay, M.M. and Yıldız, B. (2003). Predicting the financial failure: A comparison of statistical methods and neural networks. Ankara University Journal of SBF, 58, 1-24.
  • Albayrak, Y.E. and Erkut, H. (2005). Banka Performans Değerlendirmede Analitik Hiyerarşi Süreç Yaklaşımı, İTÜ Mühendislik Dergisi/d, 4 (6), 47-58.
  • Altaş D.,and Giray, S. (2005). Mali Başarısızlığın Çok Değişkenli İstatistiksel Yöntemlerle Belirlenmesi: Tekstil Sektörü Örneği. Marmara Üniversitesi Sosyal Bilimler Dergisi, (2) s.13-28.
  • Altman, E.I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy, The Journal of Finance, 23(4),589-609.
  • Altunöz, U. (2013). Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği, Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), 189-217.
  • Beaver, W. H.. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4, 71–111.
  • Benli, Y.K. (2005). Bankalarda Mali Başarısızlığın Öngörülmesi Lojistik Regresyon ve Yapay Sinir Ağı Karşılaştırması. Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi,16, 31-46.
  • Boritz, E. J. and Kennery, D. (1995). Effectiveness of neural network types for predicition of business failure. Expert Systems with Applications, 9, 503-512.
  • Bose, N.K. and Liang, P. (1996). Neural network fundamentals with graphs, algorithms and applications. USA: McGraw-Hill.
  • Boyacıoğlu, M.A., Kara, Y. and Baykan, Ö.K. (2009). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey, Expert Systems with Applications, 36(2), 3355-3366.
  • Chan, N.H. and Wong, H.Y. (2007). Data mining of resilience indicators. IIE Transactions, 39, 617-627.
  • Chang, S., Chang, H., Lin, C. and Kao, S. (2003). The effect of organizational attributes on the adoption of data mining techniques in the financial service industry: An empirical study in Taiwan. International Journal of Management, 20(1), 497-503.
  • Chen, S., Wang, W. and Zuylen, H.V. (2009). Construct support vector machine ensemble to detect traffic incident. Expert Systems with Applications, 36, 10976-10986.
  • Chin-Sheng, H., Dorsey, R. E. and Boose, M.A. (1994). Life insurer financial distress prediction: A neural network model. Journal of Insurance Regulation, 13(2), 131-168.
  • Chu, C.H. (1997). An improved neural network for manufacturing cell formation. Decision Support Systems, 20, 279-295.
  • Coats, P. K. and Fant, L. F. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22 (3), 142-155.
  • Çilli, H. and Temel, T. (1988). Türk Bankacılık Sistemi İçin Bir Erken Uyarı Modeli, T.C. Merkez Bankası Kütüphanesi, No:8804, 1-36.
  • Eklund, T., Back, B., Vanharanta, H. and Visa, A. (2003). Using the self- organizing map as a visualization tool in financial benchmarking. Information Visualization, 2 ,171- 181.
  • Erastö, P. (2001). Support Vector Machines-Backgrounds and Practice, Academic Dissertation for The Degree of Licentiate of Philosophy. Rolf Nevanlinna Institute, Helsinki.
  • Hamer, M. (1983). Failure Prediction: Sensitivity of Classification Accuracy to Alternative Statistical Methods and Variable Sets. Journal of Accounting and Public Policy,2, 289-307.
  • Hoppszallern, S. (2003). Healthcare bechmarking. Hospitals & Health Networks, 77, 37-44.
  • Hui, X.F. and Sun, J. (2006). An application of support vector machine to companies’ financial distress prediction. In the Modeling Decisions for Artificial Intelligence. Springer-Verlag, 274-282.
  • Karagülle, F. (2008). Destek Vektör Makinelerini Kullanarak Yüz Bulma, Yüksek Lisans Tezi, Edirne: Trakya Üniversitesi.
  • Kavzoğlu, T. and Çölkesen, İ. (2010). Destek Vektör Makineleri ile Uydu Görüntülerinin Etkilerinin İncelenmesi. Harita Dergisi, 144, 73-82.
  • Sınıflandırılmasında Kernel Fonksiyonlarının
  • Kılıç, S. (2006). Türk bankacılık sistemi için çok kriterli karar alma analizine dayalı bir erken uyarı modelinin tahmini. ODTÜ Gelişme Dergisi, 33(1), 117-154.
  • The case of bank failure predictions. Decision Sciences, 38, 926-948.
  • Tarassenko, L., Hayton, P., Cerneaz, N. and Brady, M. (1995). Novelty detection for the identification of masses in mammograms. In: Proceedings fourth IEE International Conference on Artificial Neural Networks, Cambridge, pp.442-447.
  • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. NewYork: Springer-Verlag.

COMPARISON OF MACHINE LEARNING TECHNIQUES FOR ANALYZING BANKS’ FINANCIAL DISTRESS

Yıl 2016, , 291 - 304, 01.12.2016
https://doi.org/10.31795/baunsobed.645223

Öz

Analyzing banks’ financial distress has gained great importance due to their importance in national economy and caused sociological and economic results. Support Vector Machines SVM and Neural Networks NN , known as machine learning methods, are applied for classifying banks as an early warning of financial distress. A case study which is taking thirty private equity commercial banks’ five year data and financial ratios, is carried out. As a result SVM obtains better classification ratio than NNs

Kaynakça

  • Abe, S. (2005). Support Vector Machines For Pattern Classification. London: Springer.
  • Aktaş, R., Doğanay, M.M. and Yıldız, B. (2003). Predicting the financial failure: A comparison of statistical methods and neural networks. Ankara University Journal of SBF, 58, 1-24.
  • Albayrak, Y.E. and Erkut, H. (2005). Banka Performans Değerlendirmede Analitik Hiyerarşi Süreç Yaklaşımı, İTÜ Mühendislik Dergisi/d, 4 (6), 47-58.
  • Altaş D.,and Giray, S. (2005). Mali Başarısızlığın Çok Değişkenli İstatistiksel Yöntemlerle Belirlenmesi: Tekstil Sektörü Örneği. Marmara Üniversitesi Sosyal Bilimler Dergisi, (2) s.13-28.
  • Altman, E.I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy, The Journal of Finance, 23(4),589-609.
  • Altunöz, U. (2013). Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği, Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), 189-217.
  • Beaver, W. H.. (1966). Financial Ratios As Predictors of Failure. Journal of Accounting Research, 4, 71–111.
  • Benli, Y.K. (2005). Bankalarda Mali Başarısızlığın Öngörülmesi Lojistik Regresyon ve Yapay Sinir Ağı Karşılaştırması. Gazi Üniversitesi Endüstriyel Sanatlar Eğitim Fakültesi Dergisi,16, 31-46.
  • Boritz, E. J. and Kennery, D. (1995). Effectiveness of neural network types for predicition of business failure. Expert Systems with Applications, 9, 503-512.
  • Bose, N.K. and Liang, P. (1996). Neural network fundamentals with graphs, algorithms and applications. USA: McGraw-Hill.
  • Boyacıoğlu, M.A., Kara, Y. and Baykan, Ö.K. (2009). Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: A comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey, Expert Systems with Applications, 36(2), 3355-3366.
  • Chan, N.H. and Wong, H.Y. (2007). Data mining of resilience indicators. IIE Transactions, 39, 617-627.
  • Chang, S., Chang, H., Lin, C. and Kao, S. (2003). The effect of organizational attributes on the adoption of data mining techniques in the financial service industry: An empirical study in Taiwan. International Journal of Management, 20(1), 497-503.
  • Chen, S., Wang, W. and Zuylen, H.V. (2009). Construct support vector machine ensemble to detect traffic incident. Expert Systems with Applications, 36, 10976-10986.
  • Chin-Sheng, H., Dorsey, R. E. and Boose, M.A. (1994). Life insurer financial distress prediction: A neural network model. Journal of Insurance Regulation, 13(2), 131-168.
  • Chu, C.H. (1997). An improved neural network for manufacturing cell formation. Decision Support Systems, 20, 279-295.
  • Coats, P. K. and Fant, L. F. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22 (3), 142-155.
  • Çilli, H. and Temel, T. (1988). Türk Bankacılık Sistemi İçin Bir Erken Uyarı Modeli, T.C. Merkez Bankası Kütüphanesi, No:8804, 1-36.
  • Eklund, T., Back, B., Vanharanta, H. and Visa, A. (2003). Using the self- organizing map as a visualization tool in financial benchmarking. Information Visualization, 2 ,171- 181.
  • Erastö, P. (2001). Support Vector Machines-Backgrounds and Practice, Academic Dissertation for The Degree of Licentiate of Philosophy. Rolf Nevanlinna Institute, Helsinki.
  • Hamer, M. (1983). Failure Prediction: Sensitivity of Classification Accuracy to Alternative Statistical Methods and Variable Sets. Journal of Accounting and Public Policy,2, 289-307.
  • Hoppszallern, S. (2003). Healthcare bechmarking. Hospitals & Health Networks, 77, 37-44.
  • Hui, X.F. and Sun, J. (2006). An application of support vector machine to companies’ financial distress prediction. In the Modeling Decisions for Artificial Intelligence. Springer-Verlag, 274-282.
  • Karagülle, F. (2008). Destek Vektör Makinelerini Kullanarak Yüz Bulma, Yüksek Lisans Tezi, Edirne: Trakya Üniversitesi.
  • Kavzoğlu, T. and Çölkesen, İ. (2010). Destek Vektör Makineleri ile Uydu Görüntülerinin Etkilerinin İncelenmesi. Harita Dergisi, 144, 73-82.
  • Sınıflandırılmasında Kernel Fonksiyonlarının
  • Kılıç, S. (2006). Türk bankacılık sistemi için çok kriterli karar alma analizine dayalı bir erken uyarı modelinin tahmini. ODTÜ Gelişme Dergisi, 33(1), 117-154.
  • The case of bank failure predictions. Decision Sciences, 38, 926-948.
  • Tarassenko, L., Hayton, P., Cerneaz, N. and Brady, M. (1995). Novelty detection for the identification of masses in mammograms. In: Proceedings fourth IEE International Conference on Artificial Neural Networks, Cambridge, pp.442-447.
  • Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. NewYork: Springer-Verlag.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme
Bölüm İktisadi ve İdari Bilimler
Yazarlar

Serpil Altınırmak Bu kişi benim

Çağlar Karamaşa Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2016
Gönderilme Tarihi 15 Nisan 2019
Kabul Tarihi 2 Kasım 2016
Yayımlandığı Sayı Yıl 2016

Kaynak Göster

APA Altınırmak, S., & Karamaşa, Ç. (2016). COMPARISON OF MACHINE LEARNING TECHNIQUES FOR ANALYZING BANKS’ FINANCIAL DISTRESS. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 19(36), 291-304. https://doi.org/10.31795/baunsobed.645223

BAUNSOBED