Araştırma Makalesi
BibTex RIS Kaynak Göster

Lightning Impulse Parameter Estimation using Genetic Algorithm (GA) and Equilibrium Optimizer (EO) Algorithm

Yıl 2021, Cilt: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Sayı: Special, 250 - 260, 20.10.2021
https://doi.org/10.53070/bbd.991052

Öz

Lightning is a natural phenomenon that occurs due to atmospheric changes and causes many negative effects on energy systems and living things. This study presents a basic approach for calculating the parameters of pulse and double exponential functions presented in the literature by optimization-based curve fitting method to recognize the lightning current waveform using equilibrium optimization (EO) algorithm from meta-heuristic optimization algorithms and genetic algorithm (GA). In the study, artificial lightning current waveform with 10/350 μs and 20.8 kA amplitude measured experimentally from Dresden High Voltage Test Technology (IP176/12S) has been used as lightning current waveform. By using this waveform, pulse and double exponential function parameters are calculated with the help of optimization algorithms. The results show that the pulse function describes the artificial lightning current waveform better than the double exponential function. When the parameter values calculated with the pulse function are compared, it is seen that the function variables calculated with EO give better results than GA with STD=5.354e-2, RE=2.35E-10, MAE=5.44e-12 and RMSE=4.48E-6.

Kaynakça

  • Referans1 Al-Hasawi W. M. and El-Naggar K. M. (2003) “A genetic based algorithm for digitally recorded impulse parameter estimation,” 2003 IEEE Bol. PowerTech - Conf. Proc., vol. 2, pp. 804–808, doi: 10.1109/PTC.2003.1304650.
  • Referans2 Anderson A. J, Eriksson R. B. (1979) “Lightning Parameters for Engineering Application,” Electra, vol. 69, pp. 65–102.
  • Referans3 Berger H, Anderson K, Kröninger R. B. (1980) “Parameters of lightning flashes,” Electra, vol. 41, pp. 23–37, 1975.
  • Referans4 Borghetti A, Gutierrez J. A, Nucci C. A. (2004) M. Paolone, E. Petrache, and F. Rachidi, “Lightning-induced voltages on complex distribution systems: Models, advanced software tools and experimental validation,” J. Electrostat., vol. 60, no. 2–4, pp. 163–174, doi: 10.1016/j.elstat.2004.01.001.
  • Referans5 Chen Y, Liu S, Wu X. and Zhang F. (2002) “A new kind of lightning channel-base current function,” IEEE Int. Symp. Electromagn. Compat., vol. 2002-Janua, no. 1, pp. 304–307, doi: 10.1109/ELMAGC.2002.1177430.
  • Referans6 Elmas Ç. (2007) Yapay Zeka Uygulamaları, Birinci Ba. Seçkin Yayıncılık.
  • Referans7 Elrodesly K. (2010) “Comparison Between Heidler Function And The Pulse Function For Modeling The Lightning Return-Stroke Current Comparison between Heidler Function and the Pulse Function for Modeling the Lightning Return-Stroke Current By,”
  • Referans8 Elrodesly K. and Hussein A. M. (2010) “Modelling The Lightning Return-Stoke Current Using Heidler Function”, 30th International Conference on Lightning Protection (ICLP).
  • Referans9 Faramarzi A, Mohammad H, Brent S. and Mirjalili S. (2020) “Equilibrium Optimizer:A Novel Optimization Algorithm”, Knowladge-Based Systems.
  • Referans10 Franzel J. F. (1993) “Genetic Algorithms,” IEEE Potentials, vol. 12, no. 3, pp. 21–24, doi: 10.1109/45.282292.
  • Referans11 Gamerota W. R, Elismé J. O, Uman M. A. and Rakov V. A. (2012) “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat., vol. 54, no. 4, pp. 880–888, doi: 10.1109/TEMC.2011.2176131.
  • Referans12 Heidler F, Cvetić J. M. and Stanić B. V. (1999) “Calculation of lightning current parameters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 399–404, doi: 10.1109/61.754080.
  • Referans13 Leteinturier C, Weidman C. and Hamelin J. (1990) “Current and electric field derivatives in triggered lightning return strokes,” J. Geophys. Res., vol. 95, no. D1, pp. 811–828, doi: 10.1029/JD095iD01p00811.
  • Referans14 Lewin P. L, Tran T. N, Swaffield D. J. and Hällström J. K. (2008) “Zero-phase filtering for lightning impulse evaluation: A K-factor filter for the revision of IEC60060-1 and -2,” IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 3–12, doi: 10.1109/TPWRD.2007.911124.
  • Referans15 Lin, Y.T., Uman, M.A. , Tiller, “characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurement,” J. Geophys. Res., vol. 84, no. 10, pp. 6307–6314.
  • Referans16 Machts R, Hunold A, Drebenstedt C, Rock M, Leu C. and Haueisen J. (2019) “Measurement and analysis of partial lightning currents in a head phantom,” PLoS One, vol. 14, no. 9, pp. 1–22, doi: 10.1371/journal.pone.0223133.
  • Referans17 McComb T. R. and Lagnese J. E. (1991) “Calculating the parameters of full lightning impulses using model-based curve fitting,” IEEE Trans. Power Deliv., vol. 6, no. 4, pp. 1386–1394, doi: 10.1109/61.97668.
  • Referans18 Paolone M, Nucci C. A, Petrache E. and Rachidi F. (2004) “Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters: Modeling and Experimental Validation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 423–431, doi: 10.1109/TPWRD.2003.820196.
  • Referans19 Paolone M, Nucci C. A, and Rachidi F. (2001) “A new finite difference time domain scheme for the evaluation of lightning induced overvoltages on multiconductor overhead lines,” 5th Int. Conf. Power Syst. transients, Rio Janeiro, Brazil, no. October 2014, pp. 1–7.
  • Referans20 Protection againts Lightning Part 1: General Prenciple, IEC Standard 62305, 2nd Edition, 2010.Rakov V. A. (2001) “Transient response of a tall object to lightning,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 654–661, doi: 10.1109/15.974646.
  • Referans21 Willett J. C, Bailey J. C, Idone V. P, Eybert-Berard A. and Barret L. (1989) “Submicrosecond intercomparison of radiation fields and currents in triggered lightning return strokes based on the transmission-line model,” J. Geophys. Res., vol. 94, no. D11, doi: 10.1029/jd094id11p13275.
  • Referans22 Wong K. C. P, Ryan H. M, Tindle J, Blackett J. and Watts M. W. (1999) “Digital measurement of lightning impulse parameters using curving fitting algorithms,” IEE Conf. Publ., vol. 1, no. 467, doi: 10.1049/cp:19990540.

Genetik Algoritma ve Denge Optimizasyon Algoritması (EO) kullanılarak Yıldırım Darbesinin Parametre Tahmini

Yıl 2021, Cilt: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Sayı: Special, 250 - 260, 20.10.2021
https://doi.org/10.53070/bbd.991052

Öz

Yıldırımlar, atmosferik değişimlere bağlı olarak meydana gelen, enerji sistemleri ve canlılar üzerinde birçok olumsuz etkiye neden olan doğa olayıdır. Bu çalışma, genetik algoritma (GA) ve Meta-sezgisel optimizasyon algoritmalarından denge optimizasyon (EO) algoritması kullanılarak yıldırım akımı dalga formunu tanımak için literatürde sunulan darbe ve çift üstel fonksiyonlarının parametrelerinin optimizasyon tabanlı eğri uydurma yöntemi ile hesaplanmasını temel bir yaklaşım sunmaktadır. Çalışmada, Yıldırım akımı dalga formu olarak Dresden Yüksek Gerilim Test Teknolojisinden (IP176/12S) deneysel olarak ölçülen 10/350 μs’ lik ve 20,8 kA genliğe sahip yapay yıldırım akım dalga formu kullanılmıştır. Bu dalga formundan faydalanılarak darbe ve çift üstel fonksiyon parametreleri optimizasyon algoritmaları yardımıyla hesaplanmıştır. Elde edilen sonuçlar, darbe fonksiyonunun yapay yıldırım akımı dalga formunu çift üstel fonksiyona göre daha iyi tanımladığını göstermektedir. Darbe fonksiyonu ile hesaplanan parametre değerleri karşılaştırıldığında, EO ile hesaplanan fonksiyon değişkenlerinin STD=5.354e-2, RE=2.35E-10, MAE=5.44e-12 ve RMSE=4.48E-6 ile GA’ya göre daha iyi sonuçlar verdiği görülmektedir.

Kaynakça

  • Referans1 Al-Hasawi W. M. and El-Naggar K. M. (2003) “A genetic based algorithm for digitally recorded impulse parameter estimation,” 2003 IEEE Bol. PowerTech - Conf. Proc., vol. 2, pp. 804–808, doi: 10.1109/PTC.2003.1304650.
  • Referans2 Anderson A. J, Eriksson R. B. (1979) “Lightning Parameters for Engineering Application,” Electra, vol. 69, pp. 65–102.
  • Referans3 Berger H, Anderson K, Kröninger R. B. (1980) “Parameters of lightning flashes,” Electra, vol. 41, pp. 23–37, 1975.
  • Referans4 Borghetti A, Gutierrez J. A, Nucci C. A. (2004) M. Paolone, E. Petrache, and F. Rachidi, “Lightning-induced voltages on complex distribution systems: Models, advanced software tools and experimental validation,” J. Electrostat., vol. 60, no. 2–4, pp. 163–174, doi: 10.1016/j.elstat.2004.01.001.
  • Referans5 Chen Y, Liu S, Wu X. and Zhang F. (2002) “A new kind of lightning channel-base current function,” IEEE Int. Symp. Electromagn. Compat., vol. 2002-Janua, no. 1, pp. 304–307, doi: 10.1109/ELMAGC.2002.1177430.
  • Referans6 Elmas Ç. (2007) Yapay Zeka Uygulamaları, Birinci Ba. Seçkin Yayıncılık.
  • Referans7 Elrodesly K. (2010) “Comparison Between Heidler Function And The Pulse Function For Modeling The Lightning Return-Stroke Current Comparison between Heidler Function and the Pulse Function for Modeling the Lightning Return-Stroke Current By,”
  • Referans8 Elrodesly K. and Hussein A. M. (2010) “Modelling The Lightning Return-Stoke Current Using Heidler Function”, 30th International Conference on Lightning Protection (ICLP).
  • Referans9 Faramarzi A, Mohammad H, Brent S. and Mirjalili S. (2020) “Equilibrium Optimizer:A Novel Optimization Algorithm”, Knowladge-Based Systems.
  • Referans10 Franzel J. F. (1993) “Genetic Algorithms,” IEEE Potentials, vol. 12, no. 3, pp. 21–24, doi: 10.1109/45.282292.
  • Referans11 Gamerota W. R, Elismé J. O, Uman M. A. and Rakov V. A. (2012) “Current waveforms for lightning simulation,” IEEE Trans. Electromagn. Compat., vol. 54, no. 4, pp. 880–888, doi: 10.1109/TEMC.2011.2176131.
  • Referans12 Heidler F, Cvetić J. M. and Stanić B. V. (1999) “Calculation of lightning current parameters,” IEEE Trans. Power Deliv., vol. 14, no. 2, pp. 399–404, doi: 10.1109/61.754080.
  • Referans13 Leteinturier C, Weidman C. and Hamelin J. (1990) “Current and electric field derivatives in triggered lightning return strokes,” J. Geophys. Res., vol. 95, no. D1, pp. 811–828, doi: 10.1029/JD095iD01p00811.
  • Referans14 Lewin P. L, Tran T. N, Swaffield D. J. and Hällström J. K. (2008) “Zero-phase filtering for lightning impulse evaluation: A K-factor filter for the revision of IEC60060-1 and -2,” IEEE Trans. Power Deliv., vol. 23, no. 1, pp. 3–12, doi: 10.1109/TPWRD.2007.911124.
  • Referans15 Lin, Y.T., Uman, M.A. , Tiller, “characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurement,” J. Geophys. Res., vol. 84, no. 10, pp. 6307–6314.
  • Referans16 Machts R, Hunold A, Drebenstedt C, Rock M, Leu C. and Haueisen J. (2019) “Measurement and analysis of partial lightning currents in a head phantom,” PLoS One, vol. 14, no. 9, pp. 1–22, doi: 10.1371/journal.pone.0223133.
  • Referans17 McComb T. R. and Lagnese J. E. (1991) “Calculating the parameters of full lightning impulses using model-based curve fitting,” IEEE Trans. Power Deliv., vol. 6, no. 4, pp. 1386–1394, doi: 10.1109/61.97668.
  • Referans18 Paolone M, Nucci C. A, Petrache E. and Rachidi F. (2004) “Mitigation of Lightning-Induced Overvoltages in Medium Voltage Distribution Lines by Means of Periodical Grounding of Shielding Wires and of Surge Arresters: Modeling and Experimental Validation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 423–431, doi: 10.1109/TPWRD.2003.820196.
  • Referans19 Paolone M, Nucci C. A, and Rachidi F. (2001) “A new finite difference time domain scheme for the evaluation of lightning induced overvoltages on multiconductor overhead lines,” 5th Int. Conf. Power Syst. transients, Rio Janeiro, Brazil, no. October 2014, pp. 1–7.
  • Referans20 Protection againts Lightning Part 1: General Prenciple, IEC Standard 62305, 2nd Edition, 2010.Rakov V. A. (2001) “Transient response of a tall object to lightning,” IEEE Trans. Electromagn. Compat., vol. 43, no. 4, pp. 654–661, doi: 10.1109/15.974646.
  • Referans21 Willett J. C, Bailey J. C, Idone V. P, Eybert-Berard A. and Barret L. (1989) “Submicrosecond intercomparison of radiation fields and currents in triggered lightning return strokes based on the transmission-line model,” J. Geophys. Res., vol. 94, no. D11, doi: 10.1029/jd094id11p13275.
  • Referans22 Wong K. C. P, Ryan H. M, Tindle J, Blackett J. and Watts M. W. (1999) “Digital measurement of lightning impulse parameters using curving fitting algorithms,” IEE Conf. Publ., vol. 1, no. 467, doi: 10.1049/cp:19990540.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka
Bölüm PAPERS
Yazarlar

Mustafa Şeker 0000-0002-3793-8786

Harun Işık 0000-0002-6149-5372

Yayımlanma Tarihi 20 Ekim 2021
Gönderilme Tarihi 4 Eylül 2021
Kabul Tarihi 16 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium Sayı: Special

Kaynak Göster

APA Şeker, M., & Işık, H. (2021). Genetik Algoritma ve Denge Optimizasyon Algoritması (EO) kullanılarak Yıldırım Darbesinin Parametre Tahmini. Computer Science, IDAP-2021 : 5th International Artificial Intelligence and Data Processing symposium(Special), 250-260. https://doi.org/10.53070/bbd.991052

The Creative Commons Attribution 4.0 International License 88x31.png  is applied to all research papers published by JCS and

a Digital Object Identifier (DOI)     Logo_TM.png  is assigned for each published paper.