Araştırma Makalesi
BibTex RIS Kaynak Göster

Rasgele Seçim Tabanlı Yer Değiştirme Kutularının Performans İyileştirmesi için Son İşlem Algoritmaları

Yıl 2020, Cilt: 1 Sayı: 1, 16 - 21, 01.06.2020

Öz

Yer değiştirme kutuları önemli bir kriptolojik yapı taşıdır. Bu kriptolojik yapıların tasarımında matematiksel dönüşümleri temel alan tasarım teknikleri özellikle Advanced Encryption Standart olarak bilinen blok şifreleme algoritmasına damgasını vurmuştur. Çünkü AES sbox yapısı en iyi kriptolojik özelliklere sahiptir. Ancak uygulamaya yönelik saldırılar göz önüne alındığında çeşitli zafiyetler ortaya çıkmaktadır. Rasgele seçim tabanlı tasarım tekniklerini temel alan sbox yapışlarının ise kriptolojik özellikleri AES sbox yapısından kötü olmasına rağmen uygulama saldırıları özelinde daha başarılıdır. Bu çalışmanın amacı rasgele seçim tabanlı yer değiştirme kutularının performans iyileştirmesini sağlayacak yöntemleri araştırmaktır. Çalışmada önerilen son işlem algoritması ile rasgele seçim tabanlı tasarımların performans iyileştirmelerinin sağlanabileceği gösterilmiştir. Elde edilen bu sonuçların ileride özellikle uygulamaya yönelik saldırıların engellenmesi için bir karşı önlem olarak önemli katkılar sunacağı düşünülmektedir.

Destekleyen Kurum

Fırat Üniversitesi

Proje Numarası

TEKF 19.18

Kaynakça

  • T. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications. Amsterdam, The Netherlands: Elsevier, 2009
  • C. Wu and D. Feng, Boolean Functions and Their Applications in Cryptography. Berlin, Germany: Springer, 2016.
  • M. S. Açikkapi, F. Özkaynak, and A. B. Özer, ‘‘Side-channel analy- sis of chaos-based substitution box structures,’’ IEEE Access, vol. 7, pp. 79030–79043, 2019. doi: 10.1109/ACCESS.2019.2921708.
  • L. Kocarev and S. Lian, Chaos Based Cryptography Theory Algorithms and Applications. Berlin, Germany: Springer-Verlag, 2011.
  • J. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific, 2010.
  • F. Özkaynak, ‘‘Construction of robust substitution boxes based on chaotic systems,’’ Neural Comput. Appl., pp. 1–10, 2017. doi: 10.1007/s00521- 017-3287-y.
  • F. Özkaynak, ‘‘An analysis and generation toolbox for chaotic substitu- tion boxes: A case study based on chaotic labyrinth rene thomas sys- tem,’’ Iranian J. Sci. Technol.-Trans. Elect. Eng., pp. 1–10, 2019. doi: 10.1007/s40998-019-00230-6.
  • K. M. Ali and M. Khan, “Application based construction and optimization of substitution boxes over 2D mixed chaotic maps,” Int. J. Theor. Phys., pp. 1–27, 2019. doi: 10.1007/s10773-019-04188-3.
  • L. Yi, X. Tong, Z. Wang, M. Zhang, H. Zhu, and J. Liu, “A novel block encryption algorithm based on chaotic s-box for wireless sen- sor network,” IEEE Access, vol. 7, pp. 53079–53090, 2019. doi: 10.1109/ACCESS.2019.2911395.
  • A. H. Zahid and M. J. Arshad, “An innovative design of substitution-boxes using cubic polynomial mapping,” Symmetry, vol. 11, no. 3, p. 437, 2019. doi: 10.3390/sym11030437.
  • M. F. Khan, A. Ahmed, K. Saleem, and T. Shah, “A novel design of cryptographic SP-network based on gold sequences and chaotic logis- tic tent system,” IEEE Access, vol. 7, pp. 84980–84991, 2019. doi: 10.1109/ACCESS.2019.2925081.
  • Y. Naseer, T. Shah, D. Shah, and S. Hussain, “A novel algorithm of constructing highly nonlinear s-p-boxes,” Cryptography, vol. 3, no. 1, p. 6, 2019. doi: 10.3390/cryptography3010006.
  • M. F. Khan, A. Ahmed, and K. Saleem, “A novel cryptographic substitution box design using Gaussian distribution,” IEEE Access, vol. 7, pp. 15999–16007, 2019. doi: 10.1109/ACCESS.2019.2893176.
  • E. Tanyıldızı, F. Özkaynak, A New Chaotic S-Box Generation Method Using Parameter Optimization of One Dimensional Chaotic Maps, VOLUME 7, 2019, DOI 10.1109/ACCESS.2019.2936447
  • AK. Farhan, RS. Ali, H. Natiq, NMG. Al-Saidi, "A New S-Box Generation Algorithm Based on Multistability Behavior of a Plasma Perturbation Model," IEEE Access, 2019, DOI 10.1109/ACCESS.2019.2938513
  • M. Alawida, A, Samsudin, JS, Teh "Digital Cosine Chaotic Map for Cryptographic Applications," IEEE Access 2019, 10.1109/ACCESS.2019.2947561
  • F. Firdousi, SI. Batool, M. Amin, "A novel construction scheme for nonlinear component based on quantum map," International Journal of Theoretical Physics, 2019 - Springer, doi.org/10.1007/s10773-019-04254-w
  • H. A. Ahmed, M. F. Zolkipli, and M. Ahmad, ‘‘A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map,’’ Neural Comput. Appl., pp. 1–10, 2018. doi: 10.1007/s00521-018- 3557-3.
  • T. Ye and L. Zhimao, ‘‘Chaotic S-box: Six-dimensional fractional Lorenz–Duffing chaotic system and O-shaped path scrambling,’’ Nonlin- ear Dyn. vol. 94, no. 3, pp. 2115–2126, 2018. doi: 10.1007/s11071-018- 4478-5.
  • U. Çavusoglu, S. Kaçar, A. Zengin, and I. Pehlivan, ‘‘A novel hybrid encryption algorithm based on chaos and S-AES algorithm,’’ Nonlinear Dyn., vol. 92, no. 4, pp. 1745–1759, 2018. doi: 10.1007/s11071-018- 4159-4.
  • X. Wang, A. Akgul, U. Cavusoglu, V. T. Pham, V. H. Duy, and Q. N. Xuan, “A chaotic system with infinite equilibria and its S-box constructing application,” Appl. Sci., vol. 8, no. 11, p. 2132, 2018. doi: 10.3390/app8112132.
  • L. Liu, Y. Zhang, and X. Wang, “A novel method for constructing the S- box based on spatiotemporal chaotic dynamics,” Appl. Sci., vol. 8, no. 12, p. 2650, 2018. doi: 10.3390/app8122650.
  • E. A. Solami, M. Ahmad, C. Volos, M. N. Doja, and M. M. S. Beg, “A new hyperchaotic system-based design for efficient bijective substitution boxes,” Entropy, vol. 20, no. 7, p. 525, 2018. doi: 10.3390/e20070525.
  • M. Ahmad, “Random search based efficient chaotic substitution box design for image encryption,” Int. J. Rough Sets Data Anal., vol. 5, no. 2, pp. 131–147, 2018. doi: 10.4018/IJRSDA.2018040107.
  • M. Khan and Z. Asghar, ‘‘A novel construction of substitution box for image encryption applications with Gingerbreadman chaotic map and S8 permutation,’’ Neural Comput. Appl., vol. 29, no. 4, pp. 993–999, Feb. 2018. doi: 10.1007/s00521-016-2511-5.
  • F. Özkaynak, ‘‘From biometric data to cryptographic primitives: A new method for generation of substitution boxes,’’ in Proc. ACM Int. Conf. Biomed. Eng. Bioinformat., Bangkok, Thailand, Sep. 2017, pp. 27–33. doi: 10.1145/3143344.3143355.
  • D. Lambic, ‘‘A novel method of S-box design based on discrete chaotic map,’’ Nonlinear Dyn., vol. 87, no. 4, pp. 2407–2413, 2017.
  • T. Farah, R. Rhouma, and S. Belghith, “A novel method for designing S-box based on chaotic map and teaching–learning-based optimization,” Nonlinear Dyn., vol. 88, no. 2, pp. 1059–1074, 2017.
  • F. Özkaynak, V. Çelik, and A. B. Özer, “A new S-box construction method based on the fractional-order chaotic Chen system,” Signal, Image Video Process., vol. 11, no. 4, pp. 659–664, 2017.
  • Ü. Çavusoglu, A. Zengin, I. Pehlivan, and S. Kaçar, ‘‘A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system,’’ Nonlinear Dyn., vol. 87, no. 2, pp. 1081–1094, 2017.
  • F. Islam and G. Liu, ‘‘Designing S-box based on 4D-4 wing hyperchaotic system,’’ 3D Res., vol. 8, p. 9, Mar. 2017.
  • F Özkaynak, Role of NPCR and UACI tests in security problems of chaos based image encryption algorithms and possible solution proposals, 2017 International Conference on Computer Science and Engineering (UBMK) DOI10.1109/UBMK.2017.8093481

Post-processing Algorithms for Performance Improvement of Substitution Boxes Based on Random Selection

Yıl 2020, Cilt: 1 Sayı: 1, 16 - 21, 01.06.2020

Öz

Substitution boxes are an important cryptographic primitive. Design techniques based on mathematical transformations, a design technique of these cryptographic primitives, have played a particularly important role in the block encryption algorithm known as the Advanced Encryption Standard (AES). Because AES substitution box structure has the best cryptographic properties. However, various weaknesses arise when the implementation attacks are considered. Although the cryptographic properties of substitution box structures based on random selection techniques are worse than the AES substitution box structure, they are more successful to prevent implementation attacks. The aim of this study is to investigate the performance improvement algorithms of substitution boxes based on random selection. In this study, it has been shown that performance improvements of substitution boxes based on random selection can be achieved with the proposed post-processing algorithms. These results are thought to make significant contributions in the future, especially as a countermeasure for the prevention of implementation attacks. 

Proje Numarası

TEKF 19.18

Kaynakça

  • T. Cusick and P. Stanica, Cryptographic Boolean Functions and Applications. Amsterdam, The Netherlands: Elsevier, 2009
  • C. Wu and D. Feng, Boolean Functions and Their Applications in Cryptography. Berlin, Germany: Springer, 2016.
  • M. S. Açikkapi, F. Özkaynak, and A. B. Özer, ‘‘Side-channel analy- sis of chaos-based substitution box structures,’’ IEEE Access, vol. 7, pp. 79030–79043, 2019. doi: 10.1109/ACCESS.2019.2921708.
  • L. Kocarev and S. Lian, Chaos Based Cryptography Theory Algorithms and Applications. Berlin, Germany: Springer-Verlag, 2011.
  • J. Sprott, Elegant Chaos Algebraically Simple Chaotic Flows. World Scientific, 2010.
  • F. Özkaynak, ‘‘Construction of robust substitution boxes based on chaotic systems,’’ Neural Comput. Appl., pp. 1–10, 2017. doi: 10.1007/s00521- 017-3287-y.
  • F. Özkaynak, ‘‘An analysis and generation toolbox for chaotic substitu- tion boxes: A case study based on chaotic labyrinth rene thomas sys- tem,’’ Iranian J. Sci. Technol.-Trans. Elect. Eng., pp. 1–10, 2019. doi: 10.1007/s40998-019-00230-6.
  • K. M. Ali and M. Khan, “Application based construction and optimization of substitution boxes over 2D mixed chaotic maps,” Int. J. Theor. Phys., pp. 1–27, 2019. doi: 10.1007/s10773-019-04188-3.
  • L. Yi, X. Tong, Z. Wang, M. Zhang, H. Zhu, and J. Liu, “A novel block encryption algorithm based on chaotic s-box for wireless sen- sor network,” IEEE Access, vol. 7, pp. 53079–53090, 2019. doi: 10.1109/ACCESS.2019.2911395.
  • A. H. Zahid and M. J. Arshad, “An innovative design of substitution-boxes using cubic polynomial mapping,” Symmetry, vol. 11, no. 3, p. 437, 2019. doi: 10.3390/sym11030437.
  • M. F. Khan, A. Ahmed, K. Saleem, and T. Shah, “A novel design of cryptographic SP-network based on gold sequences and chaotic logis- tic tent system,” IEEE Access, vol. 7, pp. 84980–84991, 2019. doi: 10.1109/ACCESS.2019.2925081.
  • Y. Naseer, T. Shah, D. Shah, and S. Hussain, “A novel algorithm of constructing highly nonlinear s-p-boxes,” Cryptography, vol. 3, no. 1, p. 6, 2019. doi: 10.3390/cryptography3010006.
  • M. F. Khan, A. Ahmed, and K. Saleem, “A novel cryptographic substitution box design using Gaussian distribution,” IEEE Access, vol. 7, pp. 15999–16007, 2019. doi: 10.1109/ACCESS.2019.2893176.
  • E. Tanyıldızı, F. Özkaynak, A New Chaotic S-Box Generation Method Using Parameter Optimization of One Dimensional Chaotic Maps, VOLUME 7, 2019, DOI 10.1109/ACCESS.2019.2936447
  • AK. Farhan, RS. Ali, H. Natiq, NMG. Al-Saidi, "A New S-Box Generation Algorithm Based on Multistability Behavior of a Plasma Perturbation Model," IEEE Access, 2019, DOI 10.1109/ACCESS.2019.2938513
  • M. Alawida, A, Samsudin, JS, Teh "Digital Cosine Chaotic Map for Cryptographic Applications," IEEE Access 2019, 10.1109/ACCESS.2019.2947561
  • F. Firdousi, SI. Batool, M. Amin, "A novel construction scheme for nonlinear component based on quantum map," International Journal of Theoretical Physics, 2019 - Springer, doi.org/10.1007/s10773-019-04254-w
  • H. A. Ahmed, M. F. Zolkipli, and M. Ahmad, ‘‘A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map,’’ Neural Comput. Appl., pp. 1–10, 2018. doi: 10.1007/s00521-018- 3557-3.
  • T. Ye and L. Zhimao, ‘‘Chaotic S-box: Six-dimensional fractional Lorenz–Duffing chaotic system and O-shaped path scrambling,’’ Nonlin- ear Dyn. vol. 94, no. 3, pp. 2115–2126, 2018. doi: 10.1007/s11071-018- 4478-5.
  • U. Çavusoglu, S. Kaçar, A. Zengin, and I. Pehlivan, ‘‘A novel hybrid encryption algorithm based on chaos and S-AES algorithm,’’ Nonlinear Dyn., vol. 92, no. 4, pp. 1745–1759, 2018. doi: 10.1007/s11071-018- 4159-4.
  • X. Wang, A. Akgul, U. Cavusoglu, V. T. Pham, V. H. Duy, and Q. N. Xuan, “A chaotic system with infinite equilibria and its S-box constructing application,” Appl. Sci., vol. 8, no. 11, p. 2132, 2018. doi: 10.3390/app8112132.
  • L. Liu, Y. Zhang, and X. Wang, “A novel method for constructing the S- box based on spatiotemporal chaotic dynamics,” Appl. Sci., vol. 8, no. 12, p. 2650, 2018. doi: 10.3390/app8122650.
  • E. A. Solami, M. Ahmad, C. Volos, M. N. Doja, and M. M. S. Beg, “A new hyperchaotic system-based design for efficient bijective substitution boxes,” Entropy, vol. 20, no. 7, p. 525, 2018. doi: 10.3390/e20070525.
  • M. Ahmad, “Random search based efficient chaotic substitution box design for image encryption,” Int. J. Rough Sets Data Anal., vol. 5, no. 2, pp. 131–147, 2018. doi: 10.4018/IJRSDA.2018040107.
  • M. Khan and Z. Asghar, ‘‘A novel construction of substitution box for image encryption applications with Gingerbreadman chaotic map and S8 permutation,’’ Neural Comput. Appl., vol. 29, no. 4, pp. 993–999, Feb. 2018. doi: 10.1007/s00521-016-2511-5.
  • F. Özkaynak, ‘‘From biometric data to cryptographic primitives: A new method for generation of substitution boxes,’’ in Proc. ACM Int. Conf. Biomed. Eng. Bioinformat., Bangkok, Thailand, Sep. 2017, pp. 27–33. doi: 10.1145/3143344.3143355.
  • D. Lambic, ‘‘A novel method of S-box design based on discrete chaotic map,’’ Nonlinear Dyn., vol. 87, no. 4, pp. 2407–2413, 2017.
  • T. Farah, R. Rhouma, and S. Belghith, “A novel method for designing S-box based on chaotic map and teaching–learning-based optimization,” Nonlinear Dyn., vol. 88, no. 2, pp. 1059–1074, 2017.
  • F. Özkaynak, V. Çelik, and A. B. Özer, “A new S-box construction method based on the fractional-order chaotic Chen system,” Signal, Image Video Process., vol. 11, no. 4, pp. 659–664, 2017.
  • Ü. Çavusoglu, A. Zengin, I. Pehlivan, and S. Kaçar, ‘‘A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system,’’ Nonlinear Dyn., vol. 87, no. 2, pp. 1081–1094, 2017.
  • F. Islam and G. Liu, ‘‘Designing S-box based on 4D-4 wing hyperchaotic system,’’ 3D Res., vol. 8, p. 9, Mar. 2017.
  • F Özkaynak, Role of NPCR and UACI tests in security problems of chaos based image encryption algorithms and possible solution proposals, 2017 International Conference on Computer Science and Engineering (UBMK) DOI10.1109/UBMK.2017.8093481
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Yaşar Selim Bahceci 0000-0002-7567-4961

Fatih Özkaynak 0000-0003-1292-8490

Proje Numarası TEKF 19.18
Yayımlanma Tarihi 1 Haziran 2020
Gönderilme Tarihi 21 Mart 2020
Kabul Tarihi 5 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 1 Sayı: 1

Kaynak Göster

APA Bahceci, Y. S., & Özkaynak, F. (2020). Rasgele Seçim Tabanlı Yer Değiştirme Kutularının Performans İyileştirmesi için Son İşlem Algoritmaları. Bilgisayar Bilimleri Ve Teknolojileri Dergisi, 1(1), 16-21.