Araştırma Makalesi
BibTex RIS Kaynak Göster

Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems

Yıl 2024, Cilt: 8 Sayı: 1, 13 - 21, 30.06.2024
https://doi.org/10.47897/bilmes.1441414

Öz

In this paper, a new Monte Carlo walk method is introduced. The increased radius floating random walk combines of the two classical Monte Carlo methods and derived from fixed-radius floating walk method. In this paper, the method is used to solve typical Laplace’s equations in rectangular region. Also, this method is easily applied to Poisson equations. Lower walk number and hence lower computation time are obtained from new method compared with the fixed random walk, floating random walk and fixed-radius random walk methods. Analyzes were performed on an average computer and the solution time was reduced by 80%. The results are also compared with Finite Element Method. Increased radius walk method’s results are good agreement with other methods.

Kaynakça

  • [1] J. H. Pickles, “Monte Carlo field calculations,” Proceedings of the Institution of Electrical Engineers, vol. 124, no. 12, p. 1271, 1977, doi: 10.1049/piee.1977.0268.
  • [2] W. Yu, K. Zhai, H. Zhuang, and J. Chen, “Accelerated floating random walk algorithm for the electrostatic computation with 3-D rectilinear-shaped conductors,” Simulation modelling practice and theory, vol. 34, pp. 20–36, May 2013, doi: 10.1016/j.simpat.2013.01.003.
  • [3] K. Chatterjee and J. Poggie, “A parallelized 3D floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation,” Electromagnetic waves, vol. 57, pp. 237–252, Jan. 2006, doi: 10.2528/pier05072802.
  • [4] R. Sotner, A. Lahiri, A. Kartci, N. Herencsar, J. Jerabek, and K. Vrba, “Design of novel precise quadrature oscillators employing ECCIIs with electronic control,” Advances in electrical and computer engineering, vol. 13, no. 2, pp. 65–72, Jan. 2013, doi: 10.4316/aece.2013.02011.
  • [5] O. A. Mousavi, M. S. Farashbashi-Astaneh, and G. B. Gharehpetian, “Improving power system risk evaluation method using Monte Carlo simulation and Gaussian mixture method,” Advances in electrical and computer engineering, vol. 9, no. 2, pp. 38–44, 2009, doi: 10.4316/aece.2009.02007.
  • [6] M. N. O. Sadiku, “Monte Carlo methods in an introductory electromagnetic course,” IEEE transactions on education, vol. 33, no. 1, pp. 73–80, Jan. 1990, doi: 10.1109/13.53630.
  • [7] M. N. O Sadiku, C. M. Akujuobi, and S. M. Musa, “Monte carlo analysis of time-dependent problems,” in Southeastcon’ 06 Proceedings of the IEEE, pp. 7-10, 2006.
  • [8] R. C. Garcia, and M. N. O. Sadiku, “Monte carlo fixed-radius floating random walk solution for potential problems,” in Southeastcon ’96. Bringing Together Education, Science and Technology Proceedings of the IEEE, 1996, pp. 88-91.
  • [9] G. E. Zinsmeister, and J. A. Sawyerr, “A method for improving the efficiency of monte carlo calculation of heat conduction problems,” Journal of Heat Transfer, vol. 96, pp. 246–248, 1974.
  • [10] G. E. Zinsmeister, and S. S. Pan, “A modification of the monte carlo method,” International Journal for Numerical Methods Engineering, vol. 10, pp. 1057–1064, 1976.
  • [11] M. N. O. Sadiku, Monte Carlo Methods for Electromagnetics. CRC Press, 1st Ed., 2009.
  • [12] M. N. O. Sadiku, Numerical Techniques in Electromagnetics. CRC Press, 2nd Ed., 2001.
  • [13] M. N. O. Sadiku, and R. C. Garcia, “Whole field computation using monte carlo method,” International Journal of Numerical Modelling,” vol. 10, pp. 303–312, 1997.
  • [14] D. Meeker, FEMM (Finite Element Method Magnetics), www.femm.info
  • [15] B. Bowerman, and R. T. O’Connell, Applied Statistics. The McGraw-Hill Companies, Inc., 1997.

Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems

Yıl 2024, Cilt: 8 Sayı: 1, 13 - 21, 30.06.2024
https://doi.org/10.47897/bilmes.1441414

Öz

In this paper, a new Monte Carlo walk method is introduced. The increased radius floating random walk combines of the two classical Monte Carlo methods and derived from fixed-radius floating walk method. In this paper, the method is used to solve typical Laplace’s equations in rectangular region. Also, this method is easily applied to Poisson equations. Lower walk number and hence lower computation time are obtained from new method compared with the fixed random walk, floating random walk and fixed-radius random walk methods. Analyzes were performed on an average computer and the solution time was reduced by 80%. The results are also compared with Finite Element Method. Increased radius walk method’s results are good agreement with other methods.

Kaynakça

  • [1] J. H. Pickles, “Monte Carlo field calculations,” Proceedings of the Institution of Electrical Engineers, vol. 124, no. 12, p. 1271, 1977, doi: 10.1049/piee.1977.0268.
  • [2] W. Yu, K. Zhai, H. Zhuang, and J. Chen, “Accelerated floating random walk algorithm for the electrostatic computation with 3-D rectilinear-shaped conductors,” Simulation modelling practice and theory, vol. 34, pp. 20–36, May 2013, doi: 10.1016/j.simpat.2013.01.003.
  • [3] K. Chatterjee and J. Poggie, “A parallelized 3D floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation,” Electromagnetic waves, vol. 57, pp. 237–252, Jan. 2006, doi: 10.2528/pier05072802.
  • [4] R. Sotner, A. Lahiri, A. Kartci, N. Herencsar, J. Jerabek, and K. Vrba, “Design of novel precise quadrature oscillators employing ECCIIs with electronic control,” Advances in electrical and computer engineering, vol. 13, no. 2, pp. 65–72, Jan. 2013, doi: 10.4316/aece.2013.02011.
  • [5] O. A. Mousavi, M. S. Farashbashi-Astaneh, and G. B. Gharehpetian, “Improving power system risk evaluation method using Monte Carlo simulation and Gaussian mixture method,” Advances in electrical and computer engineering, vol. 9, no. 2, pp. 38–44, 2009, doi: 10.4316/aece.2009.02007.
  • [6] M. N. O. Sadiku, “Monte Carlo methods in an introductory electromagnetic course,” IEEE transactions on education, vol. 33, no. 1, pp. 73–80, Jan. 1990, doi: 10.1109/13.53630.
  • [7] M. N. O Sadiku, C. M. Akujuobi, and S. M. Musa, “Monte carlo analysis of time-dependent problems,” in Southeastcon’ 06 Proceedings of the IEEE, pp. 7-10, 2006.
  • [8] R. C. Garcia, and M. N. O. Sadiku, “Monte carlo fixed-radius floating random walk solution for potential problems,” in Southeastcon ’96. Bringing Together Education, Science and Technology Proceedings of the IEEE, 1996, pp. 88-91.
  • [9] G. E. Zinsmeister, and J. A. Sawyerr, “A method for improving the efficiency of monte carlo calculation of heat conduction problems,” Journal of Heat Transfer, vol. 96, pp. 246–248, 1974.
  • [10] G. E. Zinsmeister, and S. S. Pan, “A modification of the monte carlo method,” International Journal for Numerical Methods Engineering, vol. 10, pp. 1057–1064, 1976.
  • [11] M. N. O. Sadiku, Monte Carlo Methods for Electromagnetics. CRC Press, 1st Ed., 2009.
  • [12] M. N. O. Sadiku, Numerical Techniques in Electromagnetics. CRC Press, 2nd Ed., 2001.
  • [13] M. N. O. Sadiku, and R. C. Garcia, “Whole field computation using monte carlo method,” International Journal of Numerical Modelling,” vol. 10, pp. 303–312, 1997.
  • [14] D. Meeker, FEMM (Finite Element Method Magnetics), www.femm.info
  • [15] B. Bowerman, and R. T. O’Connell, Applied Statistics. The McGraw-Hill Companies, Inc., 1997.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal Hesaplama ve Matematiksel Yazılım, Mühendislik Elektromanyetiği
Bölüm Makaleler
Yazarlar

Ali İhsan Çanakoğlu 0000-0002-3333-4512

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 22 Şubat 2024
Kabul Tarihi 1 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 1

Kaynak Göster

APA Çanakoğlu, A. İ. (2024). Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems. International Scientific and Vocational Studies Journal, 8(1), 13-21. https://doi.org/10.47897/bilmes.1441414
AMA Çanakoğlu Aİ. Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems. ISVOS. Haziran 2024;8(1):13-21. doi:10.47897/bilmes.1441414
Chicago Çanakoğlu, Ali İhsan. “Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems”. International Scientific and Vocational Studies Journal 8, sy. 1 (Haziran 2024): 13-21. https://doi.org/10.47897/bilmes.1441414.
EndNote Çanakoğlu Aİ (01 Haziran 2024) Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems. International Scientific and Vocational Studies Journal 8 1 13–21.
IEEE A. İ. Çanakoğlu, “Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems”, ISVOS, c. 8, sy. 1, ss. 13–21, 2024, doi: 10.47897/bilmes.1441414.
ISNAD Çanakoğlu, Ali İhsan. “Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems”. International Scientific and Vocational Studies Journal 8/1 (Haziran 2024), 13-21. https://doi.org/10.47897/bilmes.1441414.
JAMA Çanakoğlu Aİ. Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems. ISVOS. 2024;8:13–21.
MLA Çanakoğlu, Ali İhsan. “Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems”. International Scientific and Vocational Studies Journal, c. 8, sy. 1, 2024, ss. 13-21, doi:10.47897/bilmes.1441414.
Vancouver Çanakoğlu Aİ. Monte Carlo Increased-Radius Floating Random Walk Solution For Potential Problems. ISVOS. 2024;8(1):13-21.


Creative Commons License
Creative Commons Atıf 4.0 It is licensed under an International License