Toy kuşunun (Otis tarda) dinlenme alanı seçiminde etkili olan kalkış ve dönüş performansına kanat yüklemesinin etkis
Yıl 2019,
Cilt: 12 Sayı: 3, 28 - 32, 15.12.2019
Göksel Keskin
Seyhun Durmuş
,
Ünal Özelmas
Muharrem Karakaya
Öz
Batı Palearktik bölgede ki en ağır kuşlardan biri olan Toy kuşları için aerodinamik etkiler dağılımlarında ve korunmalarında oldukça önemlidir. Bu çalışmada, dinlenme ve beslenme zamanlarında neden açık alanları seçtikleri aerodinamik özellikleri bakımından tartışılmıştır. Ağırlığına göre küçük kanatlara sahip olan Toy kuşları çok daha zayıf bir uçuş performansına sahiptirler. Bu çalışmada bu dezavantajlar aerodinamik yaklaşım ve gözlemlerle açıklanmıştır. Bu dezavantajları kapatmak için Toy kuşları kalkış esnasında bağıl rüzgârları kullanmışlardır. Ayrıca kalkış performansına etki eden aynı aerodinamik özellikler kuşun davranışına etki eden dönüş performansını da etkilemektedir. Sonuç olarak türün duyarlı statüde olmasındaki en önemli etkenlerden biride aerodinamik özellikleridir.
Kaynakça
- McFarlane, L. A. (2014). Avian wing morphology: intra-and inter-specific effects on take-off performance and muscle function in controlling wing shape over the course of the wing stroke. (Doctoral dissertation) . University of Leeds, Leeds, England.
- Dial, K. P., & Biewener, A. A. (1993). Pectoralis muscle force and power output during different modes of flight in pigeons (Columba livia). Journal of Experimental Biology, 176(1), 31-54.
- Crandell, K. E., & Tobalske, B. W. (2011). Aerodynamics of tip-reversal upstroke in a revolving pigeon wing. Journal of Experimental Biology 214, 1867-1873. https://doi: 10.1242/jeb.051342
- Provini, P., Tobalske, B. W., Crandell, K. E., & Abourachid, A. (2012). Transition from leg to wing forces during take-off in birds. Journal of Experimental Biology, jeb-074484. https://doi: 10.1242/jeb.074484
- Robertson, A. M. B., & Biewener, A. A. (2012). Muscle function during takeoff and landing flight in the pigeon (Columba livia). The Journal of experimental biology, 215, 4104-4114. https://doi: 10.1242/jeb.075275
- Heppner, F. H., & Anderson, J. G. (1985). Leg thrust important in flight take-off in the pigeon. Journal of Experimental Biology, 114(1), 285-288.
- Bonser, R., & Rayner, J. (1996). Measuring leg thrust forces in the common starling. Journal of Experimental Biology, 199(2), 435-439.
- Tobalske, B. W., & Dial, K. P. (2000). Effects of body size on take-off flight performance in the Phasianidae (Aves). Journal of Experimental Biology, 203(21), 3319-3332.
- Henningsson, P., Hedenström, A., & Bomphrey, R. J. (2014). Efficiency of lift production in flapping and gliding flight of swifts. Plos one, 9(2), e90170. https://doi: 10.1371/journal.pone.0090170
- Spedding, G. R., & McArthur, J. (2010). Span efficiencies of wings at low Reynolds numbers. Journal of Aircraft, 47(1), 120-128. https://doi: 10.2514/1.44247.
- Pennycuick, C. J. (1983). Thermal soaring compared in three dissimilar tropical bird species, Fregata magnificens, Pelecanus occidentals and Coragyps atratus. Journal of Experimental Biology, 102(1), 307-325.
- Duriez, O., Kato, A., Tromp, C., Dell'Omo, G., Vyssotski, A. L., Sarrazin, F., & Ropert-Coudert, Y. (2014). How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS One, 9(1), e84887. https://doi: 10.1371/journal.pone.0084887.
- Rayner, J.M.V. (1988). Form and function in avian flight, In: Current Ornithology (pp. 1-66.). Boston, MA: Springer.
- Rayner, J.M.V. (1995). Dynamics of the vortex wakes of flying and swimming vertebrates, In CP Ellington and TJ Pedley (49eds.), Symposia of the Society for Experimental Biology: Biological Fluid Dynamics (131-155.). University of Leeds, UK:The Company of Biologists Ltd.
- Pennycuick, C.J. (2008). Modelling the Flying Bird. The USA: Massachusetts Academic Press, Elsevier.
- Tennekes, H. (2009). The simple science of flight: from insects to jumbo jets. The USA: MIT press.
- Raab, R., Spakovszky, P., Julius, E., Schuetz, C., & Schulze, C. H. (2011). Effects of power lines on flight behaviour of the West-Pannonian Great Bustard Otis tarda population. Bird Conservation International, 21(2), 142-155. https://doi: 10.1017/S0959270910000432.
- Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G., & Hellgren, O. (2007). Flight speeds among bird species: allometric and phylogenetic effects. PLoS biology, 5(8), e197. https://doi:10.1371/journal.pbio.0050197.
- Karakaş, R., & Akarsu, F. (2009). Recent status and distribution of the Great Bustard, Otis tarda, in Turkey: (Aves: Otidae). Zoology in the Middle East, 48(1), 25-34. https://doi:10.1080/09397140.2009.10638363.
- Güner, Ş. T., & Yücel, E. (2015). The relationships between growth of Pinus sylvestris ssp. hamata forests with ecological factors in Central Anatolia. Biological Diversity and Conservation, 8(3), 06-19.
- Akos, Z., Nagy, M., & Vicsek, T. (2008). Comparing bird and human soaring strategies. Proceedings of the National Academy of Sciences, 105(11), 4139-4143. https://doi:10.1073/pnas.0707711105.
Effects of wing loading on take-off and turning performance which is a decisive factor in the selection of resting location of the Great Bustard (Otis tarda)
Yıl 2019,
Cilt: 12 Sayı: 3, 28 - 32, 15.12.2019
Göksel Keskin
Seyhun Durmuş
,
Ünal Özelmas
Muharrem Karakaya
Öz
Great Bustard is one of the heaviest birds in the Western Palearctic, so aerodynamic effects are critically important for their distribution and conversation. To understand why do they need to find open areas during the resting and feeding time, aerodynamic features were discussed in this study. Mass of the Great Bustard and having proportionally small wings cause weak flight performance. In this work, those disadvantages were identified by aerodynamic approach and observation. Great Bustard tries to use the relative wind during the take-off to close these disadvantages. Also, turning performance which is affected by the same specifications with take-off performance can determine their behavior. As a result, aerodynamic factors may also play important role in their current status.
Kaynakça
- McFarlane, L. A. (2014). Avian wing morphology: intra-and inter-specific effects on take-off performance and muscle function in controlling wing shape over the course of the wing stroke. (Doctoral dissertation) . University of Leeds, Leeds, England.
- Dial, K. P., & Biewener, A. A. (1993). Pectoralis muscle force and power output during different modes of flight in pigeons (Columba livia). Journal of Experimental Biology, 176(1), 31-54.
- Crandell, K. E., & Tobalske, B. W. (2011). Aerodynamics of tip-reversal upstroke in a revolving pigeon wing. Journal of Experimental Biology 214, 1867-1873. https://doi: 10.1242/jeb.051342
- Provini, P., Tobalske, B. W., Crandell, K. E., & Abourachid, A. (2012). Transition from leg to wing forces during take-off in birds. Journal of Experimental Biology, jeb-074484. https://doi: 10.1242/jeb.074484
- Robertson, A. M. B., & Biewener, A. A. (2012). Muscle function during takeoff and landing flight in the pigeon (Columba livia). The Journal of experimental biology, 215, 4104-4114. https://doi: 10.1242/jeb.075275
- Heppner, F. H., & Anderson, J. G. (1985). Leg thrust important in flight take-off in the pigeon. Journal of Experimental Biology, 114(1), 285-288.
- Bonser, R., & Rayner, J. (1996). Measuring leg thrust forces in the common starling. Journal of Experimental Biology, 199(2), 435-439.
- Tobalske, B. W., & Dial, K. P. (2000). Effects of body size on take-off flight performance in the Phasianidae (Aves). Journal of Experimental Biology, 203(21), 3319-3332.
- Henningsson, P., Hedenström, A., & Bomphrey, R. J. (2014). Efficiency of lift production in flapping and gliding flight of swifts. Plos one, 9(2), e90170. https://doi: 10.1371/journal.pone.0090170
- Spedding, G. R., & McArthur, J. (2010). Span efficiencies of wings at low Reynolds numbers. Journal of Aircraft, 47(1), 120-128. https://doi: 10.2514/1.44247.
- Pennycuick, C. J. (1983). Thermal soaring compared in three dissimilar tropical bird species, Fregata magnificens, Pelecanus occidentals and Coragyps atratus. Journal of Experimental Biology, 102(1), 307-325.
- Duriez, O., Kato, A., Tromp, C., Dell'Omo, G., Vyssotski, A. L., Sarrazin, F., & Ropert-Coudert, Y. (2014). How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS One, 9(1), e84887. https://doi: 10.1371/journal.pone.0084887.
- Rayner, J.M.V. (1988). Form and function in avian flight, In: Current Ornithology (pp. 1-66.). Boston, MA: Springer.
- Rayner, J.M.V. (1995). Dynamics of the vortex wakes of flying and swimming vertebrates, In CP Ellington and TJ Pedley (49eds.), Symposia of the Society for Experimental Biology: Biological Fluid Dynamics (131-155.). University of Leeds, UK:The Company of Biologists Ltd.
- Pennycuick, C.J. (2008). Modelling the Flying Bird. The USA: Massachusetts Academic Press, Elsevier.
- Tennekes, H. (2009). The simple science of flight: from insects to jumbo jets. The USA: MIT press.
- Raab, R., Spakovszky, P., Julius, E., Schuetz, C., & Schulze, C. H. (2011). Effects of power lines on flight behaviour of the West-Pannonian Great Bustard Otis tarda population. Bird Conservation International, 21(2), 142-155. https://doi: 10.1017/S0959270910000432.
- Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G., & Hellgren, O. (2007). Flight speeds among bird species: allometric and phylogenetic effects. PLoS biology, 5(8), e197. https://doi:10.1371/journal.pbio.0050197.
- Karakaş, R., & Akarsu, F. (2009). Recent status and distribution of the Great Bustard, Otis tarda, in Turkey: (Aves: Otidae). Zoology in the Middle East, 48(1), 25-34. https://doi:10.1080/09397140.2009.10638363.
- Güner, Ş. T., & Yücel, E. (2015). The relationships between growth of Pinus sylvestris ssp. hamata forests with ecological factors in Central Anatolia. Biological Diversity and Conservation, 8(3), 06-19.
- Akos, Z., Nagy, M., & Vicsek, T. (2008). Comparing bird and human soaring strategies. Proceedings of the National Academy of Sciences, 105(11), 4139-4143. https://doi:10.1073/pnas.0707711105.