Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of different drying temperatures on the essential oil content and chemical composition of Lavandula angustifolia Mill.

Yıl 2024, Cilt: 17 Sayı: 2, 121 - 126, 15.08.2024
https://doi.org/10.46309/biodicon.2024.1363421

Öz

Drying temperatures affect the content and composition of essential oils in plants containing essential oils due to the organs where essential oils are synthesized and stored. For this reason, many studies have been carried out to determine the appropriate drying temperature to obtain the highest amount and the best quality essential oil. In present study, it is aimed to determine the effects of different drying temperatures on essential oil content and components in lavender (Lavandula angustufolia Mill.). The samples dried at four different temperatures (35°C, 45°C, 55°C and 65°C) were isolated for 3 hours using Clevenger type apparatus and the obtained oils were analyzed by GC-MS. The essential oil contents obtained at 25°C, 35°C, 45°C, 55°C, and 65°C were 1.17%, 0.96%, 0.94%, 0.65%, and 0.18% respectively. It was determined that the major components of essential oils obtained at different drying temperatures were 1.8-cineole (17.88-50.15%), camphor (32.60-48.86) and borneol (3.46-9.45%). The highest 1,8-cineole ratio was found in samples dried at 55°C (50.15%) but the lowest in samples dried at 65°C (17.88%). The highest and lowest camphor ratios were determined in samples dried at 65°C (48.86%) and samples dried at 55°C (32.60%) recpectively. The highest (9.45%) borneol ratio was obtained in samples dried at 65°C, while the lowest (3.46%) ratio was obtained in samples dried at 55°C. The results obtained in the present study showed that Lavender essential oil content and composition were affected by drying temperatures and the optimum drying temperature was 35 oC.

Kaynakça

  • References
  • [1] Koç, H. (2002). Doğrudan. Doğadan bitkilerle sağlıklı yaşama. Tokat: Gaziosmanpaşa Üniversitesi Ziraat Fakültesi. Tarla Bitkileri Bölümü, 255-256.
  • [2] Sönmez, Ç., Şimşek Soysal, A.Ö., Okkaoğlu, H., Karık, Ü., Taghiloofar, A.H., & Bayram, E. (2018). Determination of some yield and quality characterstics among individual plants of lavender (Lavandula angustifolia Mill.) populations grown under Mediterranean conditions in Turkey. Pakistan Journal of Botany, 50(6), 2285-2290.
  • [3] Öztürk, B., Konyalıoğlu, S., Kantarcı, G., & Çetinkol, D. (2005). İzmir yöresindeki yabani Lavandula stoechas L. subsp. stoechas taksonundan elde edilen uçucu yağın bileşimi. antibakteriyel. antifungal ve antioksidan kapasitesi. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 15(1), 61-72.
  • [4] Baydar, H., (2009). Lavanta. Tıbbi ve Aromatik Bitkiler Bilimi ve Teknolojisi (Genişletilmiş 3. Baskı). SDÜ Yayınları No: 51, Isparta, 274-278.
  • [5] Ceylan, A. (1996). Tıbbi bitkiler-II (Uçucu yağ bitkileri). E.Ü.Z.F. Yayınları. No:481, s 225-240. Bornova/İzmir. ISBN: 975-483-362-1.
  • [6] Baytop, T. (1999). Türkiye'de Bitkiler ile Tedavi: Geçmişte ve Bugün. İstanbul: Nobel Tıp Kitabevleri.
  • [7] Zeybek, N., & Zeybek, U. (1994). Farmasötik Botanik (2. Baskı), İzmir: Ege Üniversitesi Basımevi.
  • [8] Baydar, H., Kazaz, S., & Erbaş, S. (2013). Yağ Gülü (Rosa damasvena Mill.)’nde morfogenetik, ontogenetik ve diurnal varyabiliteler. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 8(1), 1-11.
  • [9] Güler, Z., Dursun, A., & Özkan, D. (2017). Volatile Compounds in the Leaf of Plane Tree (Platanus orientalis) with Solid Phase Microextraction (SPME) Technique. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 167-176.
  • [10] Dursun, A., Güler, Z., Özkan, D., & Bozdoğan Konuşkan, D. (2017). Identification of Volatile Compounds (VCs) in the Leaves Collected from ‘Gemlik’, ‘Halhalı’ and ‘Sarı Hasebi’ Olive Tree Varieties. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 195-204.
  • [11] Turkmen, D., Dursun, A., Caliskan, O., Koksal Kavrak, M., & Guler, Z. (2023). Volatile Compounds, Phenolic Content, and Antioxidant Capacity in Sultan Hawthorn (Crataegus azarolus L.) Leaves. Journal of Agricultural Science and Technology; 25(5), 1089-1099.
  • [12] Polatcı, H., & Tarhan, S. (2009). Farklı kurutma yöntemlerinin Reyhan (Ocimum Basilicum) bitkisinin kuruma süresine ve kalitesine etkisi, GOÜ. Ziraat Fakültesi Dergisi, 26(1), 61-70.
  • [13] Tamturk, P. (2013). The effect of different drying methods on volatile compounds of linden flower (Tilia tomentosa Moench. Master's Thesis, Bartın University Institute of Science and Technology.
  • [14] Ertuğrul, M., & Tarhan, S. (2017). Effect of different drying air temperature profiles on drying kinetics of Melissa (Melissa officinalis L.) plant and energy consumption. Gaziosmanpasa Journal of Scientific Research 6, 1-10.
  • [15] Türkmen, M., & Mert, A. (2020). Effect of different nitrogen doses on coriander (Coriandrum sativum L.) fresh herba essential oil components. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(3), 309-315.
  • [16] Kara, M., Soylu, S., Türkmen, M., & Kaya, D.A. (2020). Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Journal of Tekirdag Agricultural Faculty, 17, 264–275.
  • [17] Türkmen, M., Kara, M., Maral, H., & Soylu, S. (2022). Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. Journal of Food Processing and Preservation, 46: e15787.
  • [18] Dudas, S., Šegon, P., Erhatić, R., & Kovačević, V. (2013). Wild-growing savory Satureja montana L. (Lamiaceae) from different locations in Istria, Croatia. 2nd Sci. Conf. VIVUS-Environmentalism, Agriculture, Horticulture, Food production and Processing “Knowledge and experience for new entrepreneurial opportunities” 415-424, Naklo, Slovenia, Collection of Papers.
  • [19] Mammadov., R. (2014). Tohumlu Bitkilerde Sekonder Metabolitler. Istanbul: Nobel Akademik Yayıncılık.
  • [20] Katar, N., Aydın, D., & Katar, D. (2019). Determination of the effect of different drying temperatures on the content and chemical composition of essential oil of sage (Salvia officinalis). Biological Diversity and Conservation 12 (1), 122-127.
  • [21] Paul, K., & Bhattacha, P. (2018). Process optimization of supercritical carbon dioxide extraction of 1,8-sineol from small cardamom seeds by response surface methodolgy: in vitro antioxidant, antidiabetic and hypocholesterolemia activities of extracts. Journal of Essential Oil Bearing Plants, 21(2), 1-13. Doi: 10.1080/0972060X.2018.1439406.
  • [22] Sourestani, M.M., Malekzadeh, M., & Tava, A. (2014). Influence of drying, storage and distillation times on essential oil yield and composition of anise hyssop [Agastache foeniculum (Pursh.) Kuntze]. Journal of Essential Oil Research, 26(3), 177-184, Doi: 10.1080/10412905. 2014.882274.
  • [23] Katar, N., Katar, D., & Yıldız, E. (2021). Determination of the effect of different drying times on yield and essential oil content of Hyssop (Hyssopus officinalis) Plant. Biological Diversity and Conservation, 14(1), 28-34.
  • [24] Aydın, D., Katar, N., Katar, D., & Olgun, M. (2019). Determination of the effect of different drying temperatures on the content and chemical composition of essential oil of Greek sage (Salvia fruticosa Mill. =Salvia triloba L.). International Journal of Agriculture and Wildlife Science, 5(1), 103–109.
  • [25] Müller, J., Köll Weber, M., & Kraus, W. (1992). Effect of drying on the essential oil of Salvia officinalis. Planta Medica, 58 (1),78.
  • [26] Verma, R.S., Rahman, L.U., Chanotiya, C.S., Verma, R.K., Chauhan, A., Yadav, A., Singh, A., & Yadav, A. (2010). Essential oil composition of Lavandula augustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J Serb Chem Soc., 75,343–348.
  • [27] Jianu, C., Pop, G., Gruia, A.T., & Horhat, F.G. (2013). Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. Int. J. Agric. Biol., 15, 772‒776.
  • [28] Maral, H., Ulupınar, S., Turk Baydır, A., Ozbay, S., Altınkaynak, K., Sebin, E., Siktar, E., Kishalı, N.F., Buzdaǧlı, Y., & Gençoǧlu, C. (2022). Effect of Origanum dubium, Origanum vulgare subsp. hirtum, and Lavandula angustifolia essential oils on lipid profiles and liver biomarkers in athletes. Zeitschrift Naturforsch.-Sect. C J. Biosci. 77, 177–187.
  • [29] Arabacı, O., & Bayram, E. (2005). Aydın ekolojik koşullarında lavanta (lavandula angustifolia mill.)’nın bazı agronomik ve kalite özellikleri üzerine bitki sıklığı ve azotlu gübrenin etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 2 (2), 13-19.
  • [30] Kara, N., & Baydar, H. (2013). Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turkish Journal of Field Crops, 18(1), 58-65.

Farklı kurutma sıcaklıklarının Lavandula angustifolia Mill uçucu yağ içeriği ve kimyasal bileşimi üzerine etkisi

Yıl 2024, Cilt: 17 Sayı: 2, 121 - 126, 15.08.2024
https://doi.org/10.46309/biodicon.2024.1363421

Öz

Kurutma sıcaklıkları, uçucu yağların sentezlendiği ve depolandığı organlar nedeniyle uçucu yağ içeren bitkilerdeki uçucu yağların içeriğini ve bileşimini etkiler. Bu nedenle en yüksek miktarda ve en kaliteli uçucu yağı elde etmek için uygun kurutma sıcaklığını belirlemek üzere birçok çalışma yapılmıştır. Bu çalışmada, farklı kurutma sıcaklıklarının lavantanın (Lavandula angustufolia Mill.) uçucu yağ içeriği ve bileşenleri üzerindeki etkilerinin belirlenmesi amaçlanmıştır. Dört farklı sıcaklıkta (35°C, 45°C, 55°C ve 65°C) kurutulan örnekler Clevenger tipi aparat kullanılarak 3 saat izole edilmiş ve elde edilen yağlar GC-MS ile analiz edilmiştir. 25°C, 35°C, 45°C, 55°C ve 65°C'de elde edilen uçucu yağ içerikleri sırasıyla %1,17, %0,96, %0,94, %0,65 ve %0,18'dir. Farklı kurutma sıcaklıklarında elde edilen uçucu yağların ana bileşenlerinin 1.8-cineole (%17.88-50.15), camphor (32.60-48.86) ve borneol (%3.46-9.45) olduğu belirlenmiştir. En yüksek 1,8-sineol oranı 55°C'de kurutulan örneklerde (%50.15), en düşük ise 65°C'de kurutulan örneklerde (%17.88) bulunmuştur. En yüksek ve en düşük kafur oranları sırasıyla 65°C'de (%48,86) ve 55°C'de (%32,60) kurutulan örneklerde tespit edilmiştir. En yüksek (%9,45) borneol oranı 65°C'de kurutulan örneklerde elde edilirken, en düşük (%3,46) oran 55°C'de kurutulan örneklerde elde edilmiştir. Bu çalışmada elde edilen sonuçlar, Lavanta uçucu yağ içeriği ve bileşiminin kurutma sıcaklıklarından etkilendiğini ve optimum kurutma sıcaklığının 35 oC olduğunu göstermiştir.

Kaynakça

  • References
  • [1] Koç, H. (2002). Doğrudan. Doğadan bitkilerle sağlıklı yaşama. Tokat: Gaziosmanpaşa Üniversitesi Ziraat Fakültesi. Tarla Bitkileri Bölümü, 255-256.
  • [2] Sönmez, Ç., Şimşek Soysal, A.Ö., Okkaoğlu, H., Karık, Ü., Taghiloofar, A.H., & Bayram, E. (2018). Determination of some yield and quality characterstics among individual plants of lavender (Lavandula angustifolia Mill.) populations grown under Mediterranean conditions in Turkey. Pakistan Journal of Botany, 50(6), 2285-2290.
  • [3] Öztürk, B., Konyalıoğlu, S., Kantarcı, G., & Çetinkol, D. (2005). İzmir yöresindeki yabani Lavandula stoechas L. subsp. stoechas taksonundan elde edilen uçucu yağın bileşimi. antibakteriyel. antifungal ve antioksidan kapasitesi. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 15(1), 61-72.
  • [4] Baydar, H., (2009). Lavanta. Tıbbi ve Aromatik Bitkiler Bilimi ve Teknolojisi (Genişletilmiş 3. Baskı). SDÜ Yayınları No: 51, Isparta, 274-278.
  • [5] Ceylan, A. (1996). Tıbbi bitkiler-II (Uçucu yağ bitkileri). E.Ü.Z.F. Yayınları. No:481, s 225-240. Bornova/İzmir. ISBN: 975-483-362-1.
  • [6] Baytop, T. (1999). Türkiye'de Bitkiler ile Tedavi: Geçmişte ve Bugün. İstanbul: Nobel Tıp Kitabevleri.
  • [7] Zeybek, N., & Zeybek, U. (1994). Farmasötik Botanik (2. Baskı), İzmir: Ege Üniversitesi Basımevi.
  • [8] Baydar, H., Kazaz, S., & Erbaş, S. (2013). Yağ Gülü (Rosa damasvena Mill.)’nde morfogenetik, ontogenetik ve diurnal varyabiliteler. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 8(1), 1-11.
  • [9] Güler, Z., Dursun, A., & Özkan, D. (2017). Volatile Compounds in the Leaf of Plane Tree (Platanus orientalis) with Solid Phase Microextraction (SPME) Technique. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 167-176.
  • [10] Dursun, A., Güler, Z., Özkan, D., & Bozdoğan Konuşkan, D. (2017). Identification of Volatile Compounds (VCs) in the Leaves Collected from ‘Gemlik’, ‘Halhalı’ and ‘Sarı Hasebi’ Olive Tree Varieties. International Journal of Secondary Metabolite, 4(3, Special Issue 1), 195-204.
  • [11] Turkmen, D., Dursun, A., Caliskan, O., Koksal Kavrak, M., & Guler, Z. (2023). Volatile Compounds, Phenolic Content, and Antioxidant Capacity in Sultan Hawthorn (Crataegus azarolus L.) Leaves. Journal of Agricultural Science and Technology; 25(5), 1089-1099.
  • [12] Polatcı, H., & Tarhan, S. (2009). Farklı kurutma yöntemlerinin Reyhan (Ocimum Basilicum) bitkisinin kuruma süresine ve kalitesine etkisi, GOÜ. Ziraat Fakültesi Dergisi, 26(1), 61-70.
  • [13] Tamturk, P. (2013). The effect of different drying methods on volatile compounds of linden flower (Tilia tomentosa Moench. Master's Thesis, Bartın University Institute of Science and Technology.
  • [14] Ertuğrul, M., & Tarhan, S. (2017). Effect of different drying air temperature profiles on drying kinetics of Melissa (Melissa officinalis L.) plant and energy consumption. Gaziosmanpasa Journal of Scientific Research 6, 1-10.
  • [15] Türkmen, M., & Mert, A. (2020). Effect of different nitrogen doses on coriander (Coriandrum sativum L.) fresh herba essential oil components. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(3), 309-315.
  • [16] Kara, M., Soylu, S., Türkmen, M., & Kaya, D.A. (2020). Determination and antifungal activities of laurel and fennel essential oils against fungal disease agents of cypress seedlings. Journal of Tekirdag Agricultural Faculty, 17, 264–275.
  • [17] Türkmen, M., Kara, M., Maral, H., & Soylu, S. (2022). Determination of chemical component of essential oil of Origanum dubium plants grown at different altitudes and antifungal activity against Sclerotinia sclerotiorum. Journal of Food Processing and Preservation, 46: e15787.
  • [18] Dudas, S., Šegon, P., Erhatić, R., & Kovačević, V. (2013). Wild-growing savory Satureja montana L. (Lamiaceae) from different locations in Istria, Croatia. 2nd Sci. Conf. VIVUS-Environmentalism, Agriculture, Horticulture, Food production and Processing “Knowledge and experience for new entrepreneurial opportunities” 415-424, Naklo, Slovenia, Collection of Papers.
  • [19] Mammadov., R. (2014). Tohumlu Bitkilerde Sekonder Metabolitler. Istanbul: Nobel Akademik Yayıncılık.
  • [20] Katar, N., Aydın, D., & Katar, D. (2019). Determination of the effect of different drying temperatures on the content and chemical composition of essential oil of sage (Salvia officinalis). Biological Diversity and Conservation 12 (1), 122-127.
  • [21] Paul, K., & Bhattacha, P. (2018). Process optimization of supercritical carbon dioxide extraction of 1,8-sineol from small cardamom seeds by response surface methodolgy: in vitro antioxidant, antidiabetic and hypocholesterolemia activities of extracts. Journal of Essential Oil Bearing Plants, 21(2), 1-13. Doi: 10.1080/0972060X.2018.1439406.
  • [22] Sourestani, M.M., Malekzadeh, M., & Tava, A. (2014). Influence of drying, storage and distillation times on essential oil yield and composition of anise hyssop [Agastache foeniculum (Pursh.) Kuntze]. Journal of Essential Oil Research, 26(3), 177-184, Doi: 10.1080/10412905. 2014.882274.
  • [23] Katar, N., Katar, D., & Yıldız, E. (2021). Determination of the effect of different drying times on yield and essential oil content of Hyssop (Hyssopus officinalis) Plant. Biological Diversity and Conservation, 14(1), 28-34.
  • [24] Aydın, D., Katar, N., Katar, D., & Olgun, M. (2019). Determination of the effect of different drying temperatures on the content and chemical composition of essential oil of Greek sage (Salvia fruticosa Mill. =Salvia triloba L.). International Journal of Agriculture and Wildlife Science, 5(1), 103–109.
  • [25] Müller, J., Köll Weber, M., & Kraus, W. (1992). Effect of drying on the essential oil of Salvia officinalis. Planta Medica, 58 (1),78.
  • [26] Verma, R.S., Rahman, L.U., Chanotiya, C.S., Verma, R.K., Chauhan, A., Yadav, A., Singh, A., & Yadav, A. (2010). Essential oil composition of Lavandula augustifolia Mill. cultivated in the mid hills of Uttarakhand, India. J Serb Chem Soc., 75,343–348.
  • [27] Jianu, C., Pop, G., Gruia, A.T., & Horhat, F.G. (2013). Chemical composition and antimicrobial activity of essential oils of lavender (Lavandula angustifolia) and lavandin (Lavandula x intermedia) grown in Western Romania. Int. J. Agric. Biol., 15, 772‒776.
  • [28] Maral, H., Ulupınar, S., Turk Baydır, A., Ozbay, S., Altınkaynak, K., Sebin, E., Siktar, E., Kishalı, N.F., Buzdaǧlı, Y., & Gençoǧlu, C. (2022). Effect of Origanum dubium, Origanum vulgare subsp. hirtum, and Lavandula angustifolia essential oils on lipid profiles and liver biomarkers in athletes. Zeitschrift Naturforsch.-Sect. C J. Biosci. 77, 177–187.
  • [29] Arabacı, O., & Bayram, E. (2005). Aydın ekolojik koşullarında lavanta (lavandula angustifolia mill.)’nın bazı agronomik ve kalite özellikleri üzerine bitki sıklığı ve azotlu gübrenin etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 2 (2), 13-19.
  • [30] Kara, N., & Baydar, H. (2013). Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turkish Journal of Field Crops, 18(1), 58-65.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi ve Aromatik Bitkiler
Bölüm Araştırma Makaleleri
Yazarlar

Musa Türkmen 0000-0001-9914-9523

Yılmaz Eren 0000-0002-7636-2193

Hasan Maral 0000-0001-9074-1109

Alpaslan Kaya 0000-0003-3544-9214

Erken Görünüm Tarihi 11 Mayıs 2024
Yayımlanma Tarihi 15 Ağustos 2024
Gönderilme Tarihi 21 Eylül 2023
Kabul Tarihi 15 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 17 Sayı: 2

Kaynak Göster

APA Türkmen, M., Eren, Y., Maral, H., Kaya, A. (2024). The effect of different drying temperatures on the essential oil content and chemical composition of Lavandula angustifolia Mill. Biological Diversity and Conservation, 17(2), 121-126. https://doi.org/10.46309/biodicon.2024.1363421

18385183861838718388183892276122760