Research Article
BibTex RIS Cite

The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization

Year 2021, Volume: 2 Issue: 2, 27 - 31, 31.12.2021
https://doi.org/10.51539/biotech.1033344

Abstract

The first step in using polymeric materials for many applications is their crosslinking. Before application, the cross-linker used in crosslinking should be kept at an optimum ratio. The use of gellan gum, a polymeric material, as an intra-body biomaterial is also included in these application areas. In this study, the effect of CaCl2 ratio used as GG cross-linker on the biomineralization of the obtained GG hydrogel was investigated. FTIR, XRD, SEM and EDS analyzes of the synthesized and lyophilized cross-linked GG samples were performed before and after biomineralization. In line with the results obtained, it was observed that the bioactivity of the GG hydrogel could be changed by changing the cross-linking ratio.

Supporting Institution

Sakarya Üniversitesi

Project Number

2019-6-23-223

Thanks

This work was supported by the Scientific Research Projects Commission of Sakarya University (Project number: 2019-6-23-223).

References

  • Bendtsen, S. T., & Wei, M. (2015). Synthesis and characterization of a novel injectable alginate-collagen-hydroxyapatite hydrogel for bone tissue regeneration. Journal of Materials Chemistry B, 3(15), 3081–3090. https://doi.org/10.1039/c5tb00072f
  • Choi, Y., Kim, H.-J., & Min, K.-S. (2016). Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold. Restorative Dentistry & Endodontics, 41(4), 296. https://doi.org/10.5395/rde.2016.41.4.296
  • Costa, L., Silva-correia, J., & Oliveira, J. M. (2018). Gellan Gum-Based Hydrogels for Osteochondral Repair. In S. R. J. Oliveira J., Pina S., Reis R. (Ed.), Osteochondral Tissue Engineering (pp. 281–304). https://doi.org/10.1007/978-3-319-76711-6
  • Hua, J., Li, Z., Xia, W., Yang, N., Gong, J., Zhang, J., & Qiao, C. (2016). Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Materials Science and Engineering C, 61, 879–892. https://doi.org/10.1016/j.msec.2016.01.001
  • Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  • Maiti, S., Khillar, P. S., Mishra, D., Nambiraj, N. A., & Jaiswal, A. K. (2021). Physical and self – crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polymer Testing, 97, 107155. https://doi.org/10.1016/j.polymertesting.2021.107155
  • Tang, G., Tan, Z., Zeng, W., Wang, X., Shi, C., Liu, Y., … Ye, X. (2020). Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 8(September), 1–15. https://doi.org/10.3389/fbioe.2020.587658
  • Xue, J., Feng, C., Xia, L., Zhai, D., Ma, B., Wang, X., … Wu, C. (2018). Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity. Chemistry of Materials, 30(14), 4646–4657. https://doi.org/10.1021/acs.chemmater.8b01272
  • Ye, B., Zhang, S., Li, R., Li, L., Lu, L., & Zhou, C. (2018). An in-situ formable and fi brils-reinforced polysaccharide composite hydrogel by self-crosslinking with dual healing ability, 156, 238–246. https://doi.org/10.1016/j.compscitech.2017.12.032
Year 2021, Volume: 2 Issue: 2, 27 - 31, 31.12.2021
https://doi.org/10.51539/biotech.1033344

Abstract

Project Number

2019-6-23-223

References

  • Bendtsen, S. T., & Wei, M. (2015). Synthesis and characterization of a novel injectable alginate-collagen-hydroxyapatite hydrogel for bone tissue regeneration. Journal of Materials Chemistry B, 3(15), 3081–3090. https://doi.org/10.1039/c5tb00072f
  • Choi, Y., Kim, H.-J., & Min, K.-S. (2016). Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold. Restorative Dentistry & Endodontics, 41(4), 296. https://doi.org/10.5395/rde.2016.41.4.296
  • Costa, L., Silva-correia, J., & Oliveira, J. M. (2018). Gellan Gum-Based Hydrogels for Osteochondral Repair. In S. R. J. Oliveira J., Pina S., Reis R. (Ed.), Osteochondral Tissue Engineering (pp. 281–304). https://doi.org/10.1007/978-3-319-76711-6
  • Hua, J., Li, Z., Xia, W., Yang, N., Gong, J., Zhang, J., & Qiao, C. (2016). Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Materials Science and Engineering C, 61, 879–892. https://doi.org/10.1016/j.msec.2016.01.001
  • Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
  • Maiti, S., Khillar, P. S., Mishra, D., Nambiraj, N. A., & Jaiswal, A. K. (2021). Physical and self – crosslinking mechanism and characterization of chitosan-gelatin-oxidized guar gum hydrogel. Polymer Testing, 97, 107155. https://doi.org/10.1016/j.polymertesting.2021.107155
  • Tang, G., Tan, Z., Zeng, W., Wang, X., Shi, C., Liu, Y., … Ye, X. (2020). Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 8(September), 1–15. https://doi.org/10.3389/fbioe.2020.587658
  • Xue, J., Feng, C., Xia, L., Zhai, D., Ma, B., Wang, X., … Wu, C. (2018). Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity. Chemistry of Materials, 30(14), 4646–4657. https://doi.org/10.1021/acs.chemmater.8b01272
  • Ye, B., Zhang, S., Li, R., Li, L., Lu, L., & Zhou, C. (2018). An in-situ formable and fi brils-reinforced polysaccharide composite hydrogel by self-crosslinking with dual healing ability, 156, 238–246. https://doi.org/10.1016/j.compscitech.2017.12.032
There are 9 citations in total.

Details

Primary Language English
Subjects Biomaterial
Journal Section Research Articles
Authors

Serbülent Türk

Burak Ünlü

Mahmut Özacar

Project Number 2019-6-23-223
Publication Date December 31, 2021
Acceptance Date December 24, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Türk, S., Ünlü, B., & Özacar, M. (2021). The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization. Bulletin of Biotechnology, 2(2), 27-31. https://doi.org/10.51539/biotech.1033344
AMA Türk S, Ünlü B, Özacar M. The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization. Bull. Biotechnol. December 2021;2(2):27-31. doi:10.51539/biotech.1033344
Chicago Türk, Serbülent, Burak Ünlü, and Mahmut Özacar. “The Effect of the Cross-Linker Ratio Used in Gellan Gum Biomaterial Synthesis on Biomineralization”. Bulletin of Biotechnology 2, no. 2 (December 2021): 27-31. https://doi.org/10.51539/biotech.1033344.
EndNote Türk S, Ünlü B, Özacar M (December 1, 2021) The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization. Bulletin of Biotechnology 2 2 27–31.
IEEE S. Türk, B. Ünlü, and M. Özacar, “The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization”, Bull. Biotechnol., vol. 2, no. 2, pp. 27–31, 2021, doi: 10.51539/biotech.1033344.
ISNAD Türk, Serbülent et al. “The Effect of the Cross-Linker Ratio Used in Gellan Gum Biomaterial Synthesis on Biomineralization”. Bulletin of Biotechnology 2/2 (December 2021), 27-31. https://doi.org/10.51539/biotech.1033344.
JAMA Türk S, Ünlü B, Özacar M. The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization. Bull. Biotechnol. 2021;2:27–31.
MLA Türk, Serbülent et al. “The Effect of the Cross-Linker Ratio Used in Gellan Gum Biomaterial Synthesis on Biomineralization”. Bulletin of Biotechnology, vol. 2, no. 2, 2021, pp. 27-31, doi:10.51539/biotech.1033344.
Vancouver Türk S, Ünlü B, Özacar M. The effect of the cross-linker ratio used in gellan gum biomaterial synthesis on biomineralization. Bull. Biotechnol. 2021;2(2):27-31.