Research Article
BibTex RIS Cite
Year 2025, Volume: 34 Issue: SI, 30 - 36
https://doi.org/10.38042/biotechstudies.1666641

Abstract

Project Number

2020-123

References

  • Ananga, A., Georgiev, V., Ochieng, J. W., Phills, B. R., & Tsolova, V. (2013). Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. InTech. https://doi.org/10.5772/54592
  • Aguero, C. B., Meredith, C. P., & Dandekar, A. M. (2006). Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis - Journal of Grapevine Research, 45(1), 1-8. https://doi.org/10.5073/vitis.2006.45.1-8
  • Appelhagen, I., Wulff-Vester, A. K., Wendell, M., Hvoslef-Eide, A. K., Russell, J., Oertel, A., & Matros, A. (2018). Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering, 48, 218-232. https://doi.org/10.1016/j.ymben.2018.06.004
  • Bayraktar, M., Hayta, S., Parlak, S., & Gurel, A. (2015). Micropropagation of centennial tertiary relict trees of Liquidambar orientalis Miller through meristematic nodules produced by cultures of primordial shoots. Trees, 29, 999-1009. https://doi.org/10.1007/s00468-015-1179-2
  • Campos, G., Chialva, C., Miras, S., & Lijavetzky, D. (2021). New technologies and strategies for grapevine breeding through genetic transformation. Frontiers in Plant Science, 12, 767522. https://doi.org/10.3389/fpls.2021.767522
  • Chadipiralla, K., Gayathri, P., Rajani, V., & Reddy, P. V. B. (2020). Plant tissue culture and crop improvement. Sustainable Agriculture in the Era of Climate Change, 391-412. https://doi.org/10.1007/978-3-030-45669-6_18
  • Cormier, F., Brion, F., Do, C. B., & Moresoli, C. (1996). Development of process strategies for anthocyanin-based food colorant production using Vitis vinifera cell cultures. In F. DiCosmo & M. Misawa (Eds.), Plant cell culture secondary metabolism toward industrial application (pp. 167-186). CRC Press LLC. https://doi.org/10.1007/978-1-4615-5919-1_9
  • Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50-59.https://doi.org/10.1016/j.eng.2018.11.006
  • Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  • Gao, L., Liu, J., Liao, L., Gao, A., Njuguna, B. N., Zhao, C., ... & Han, Y. (2023). Callus induction and adventitious root regeneration of cotyledon explants in peach trees. Horticulturae, 9(8), 850. https://doi.org/10.3390/horticulturae9080850
  • Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D. M., & Thorpe, T. A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In vitro Cellular & Developmental Biology-Plant, 32, 272-289. https://doi.org/10.1007/BF02822700
  • George, E. F., Hall, M. A., & De Klerk, G. J. (2008). Plant propagation by tissue culture (3rd ed.). Springer. https://doi.org/10.1007/978-1-4020-5005-3 Gray, W. M. (2004). Hormonal regulation of plant growth and development. PLoS Biology, 2(9), E311. https://doi.org/10.1371/journal.pbio.0020311
  • Hayta, S., Smedley, M. A., Li, J., Harwood, W. A., & Gilmartin, P. M. (2016). Plant regeneration from leaf-derived callus cultures of primrose (Primula vulgaris). HortScience, 51(5), 558-562. https://doi.org/10.21273/HORTSCI.51.5.558
  • Hussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant tissue culture: Current status and opportunities. Recent Advances in Plant In Vitro Culture, 6(10), 1-28. https://doi.org/10.5772/50568
  • Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25(9), 3159-3173. https://doi.org/10.1105/tpc.113.116053
  • Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K., & Ohme-Takagi, M. (2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514. https://doi.org/10.1016/j.cub.2011.02.020
  • Khan, N., Ahmed, M., Hafiz, I., Abbasi, N., Ejaz, S., & Anjum, M. (2015). Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. Oeno One, 49(1), 37-45. https://doi.org/10.20870/oeno-one.2015.49.1.95
  • Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168.
  • Kotb, O. M., Abd EL-Latif, F. M., Atawia, A. R., & Saleh, S. S. (2020). In vitro propagation and callus induction of pear (Pyrus communis) Cv. Le-Conte. Asian Journal of Biotechnology and Genetic Engineering, 3(2), 1-10.
  • Li, S. M., Zheng, H. X., Zhang, X. S., & Sui, N. (2021). Cytokinins as central regulators during plant growth and stress response. Plant cell reports, 40, 271-282. https://doi.org/10.1007/s00299-020-02612-1
  • Lloyd, G., & McCown, B. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. International Plant Propagation Society, 30, 421–427
  • Martínez, M. E., Poirrier, P., Prüfer, D., Gronover, C. S., Jorquera, L., Ferrer, P., ... & Chamy, R. (2018). Kinetics and modeling of cell growth for potential anthocyanin induction in cultures of Taraxacum officinale GH Weber ex Wiggers (Dandelion) in vitro. Electronic Journal of Biotechnology, 36, 15-23. https://doi.org/10.1016/j.ejbt.2018.08.006
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Ozden, M. (2024). Secondary metabolite production in callus cultures of Vitis vinifera: influence of genotype and sucrose concentration in the medium on antioxidant activity. Acta Physiologiae Plantarum, 46(1), 6. https://doi.org/10.1007/s11738-023-03630-8
  • Parihar, S., & Sharma, D. (2021). A brief overview on Vitis vinifera. Scholars Academic Journal of Pharmacy, 12, 231-239. https://doi.org/10.36347/sajp.2021.v10i12.005
  • Pehlivan, E. C., Kunter, B., & Royandazagh, S. D. (2017). Choice of explant material and media for in vitro callus regeneration in Sultana grape cultivar (Vitis vinifera L.). Tekirdağ Ziraat Fakültesi Dergisi. The Special Issue of 2nd International Balkan Agriculture Congress, 30-34.
  • Phillips, G. C., & Garda, M. (2019). Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology - Plant, 55, 242–257. https://doi.org/10.1007/s11627-019-09983-5
  • Qu, J., Zhang, W., Yu, X., & Jin, M. (2005). Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Fréaux suspension cultures. Biotechnology and Bioprocess Engineering, 10(2), 155-161. https://doi.org/10.1007/BF02932586
  • Robinson, J., Harding, J., & Vouillamoz, J. (2013). Wine grapes: a complete guide to 1,368 vine varieties, including their origins and flavours. Penguin UK.
  • Skoog, F. (1957). Chemical regulation of growth and organ formation in plant tissue cultured in vitro. In Symposium of the Society for Experimental Biology. volume.(11), 118-131. https://doi.org/10.1016/B978-0-12-007901-8.50013-X
  • Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin–cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616-625. https://doi.org/10.1093/mp/ssr007
  • Teale, W. D., Paponov, I. A., & Palme, K. (2006). Auxin in action: Signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7(11), 847-859. https://doi.org/10.1038/nrm2020
  • Wang, C., He, R., Lu, J., & Zhang, Y. (2018). Selection and regeneration of Vitis vinifera Chardonnay hydroxyproline-resistant calli. Protoplasma, 255, 1413-1422. https://doi.org/10.1007/s00709-018-1240-2
  • Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180–185. https://doi.org/10.1002/wics.147
  • Wu, J., Zhang, J., Hao, X., Lv, K., Xie, Y., & Xu, W. (2024). Establishment of an efficient callus transient transformation system for Vitis vinifera cv. 'Chardonnay'. Protoplasma, 261(2), 351-366. https://doi.org/10.1007/s00709-023-01901-2

Investigation of callus induction in Chardonnay grapevine (Vitis vinifera L.)

Year 2025, Volume: 34 Issue: SI, 30 - 36
https://doi.org/10.38042/biotechstudies.1666641

Abstract

Callus induction is an important step in plant transformation aimed at improving grapevines, one of the most cultivated fruit crops. Callus induction can be influenced by nutrients, plant growth regulators, physical environments, explant type, infection, and genetic factors. This study investigates the efficiency of callus induction in the Chardonnay grape variety using different nutrient mediums, plant growth regulators, and explant types. Internode and leaf disc parts were selected as explant types and cultured in Murashige and Skoog (MS) and Lloyd and McCown Woody Plant (WP) nutrient medium with 7% agar, containing varying concentrations of plant growth regulators such as NAA, 2,4-D, and BA. Different combinations resulted in various types calli, including friable, compact, shooty, and rooty, with different colors by the end of the 21st day. WP medium consistently yielded the highest callus induction rates across all plant growth regulator combinations. The combination of 0.5 mg/L 2,4-D and 0.2 mg/L NAA in MS medium produced the largest callus area in internode explants. Conversely, leaf discs exhibited lower callus induction rates. Additionally, 1 mg/L BA and 0.2 mg/L NAA in MS medium promoted shoot formation, while the same combination in WP medium facilitated both shoot and root formation in internode explants.

Supporting Institution

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) through the 2209-A University Students Research Projects Support Program (to MP), and by Manisa Celal Bayar University Scientific Research Projects funds (grant 2020-123 to HK).

Project Number

2020-123

Thanks

The authors thank Dr. Meltem Bayraktar from Ahi Evran University for kindly sharing her experience in tissue culture. Special thanks to Dr. Tuğba Keskin Gündoğdu from İzmir Demokrasi University for helpful suggestions on statistical analysis.

References

  • Ananga, A., Georgiev, V., Ochieng, J. W., Phills, B. R., & Tsolova, V. (2013). Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. InTech. https://doi.org/10.5772/54592
  • Aguero, C. B., Meredith, C. P., & Dandekar, A. M. (2006). Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis - Journal of Grapevine Research, 45(1), 1-8. https://doi.org/10.5073/vitis.2006.45.1-8
  • Appelhagen, I., Wulff-Vester, A. K., Wendell, M., Hvoslef-Eide, A. K., Russell, J., Oertel, A., & Matros, A. (2018). Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metabolic Engineering, 48, 218-232. https://doi.org/10.1016/j.ymben.2018.06.004
  • Bayraktar, M., Hayta, S., Parlak, S., & Gurel, A. (2015). Micropropagation of centennial tertiary relict trees of Liquidambar orientalis Miller through meristematic nodules produced by cultures of primordial shoots. Trees, 29, 999-1009. https://doi.org/10.1007/s00468-015-1179-2
  • Campos, G., Chialva, C., Miras, S., & Lijavetzky, D. (2021). New technologies and strategies for grapevine breeding through genetic transformation. Frontiers in Plant Science, 12, 767522. https://doi.org/10.3389/fpls.2021.767522
  • Chadipiralla, K., Gayathri, P., Rajani, V., & Reddy, P. V. B. (2020). Plant tissue culture and crop improvement. Sustainable Agriculture in the Era of Climate Change, 391-412. https://doi.org/10.1007/978-3-030-45669-6_18
  • Cormier, F., Brion, F., Do, C. B., & Moresoli, C. (1996). Development of process strategies for anthocyanin-based food colorant production using Vitis vinifera cell cultures. In F. DiCosmo & M. Misawa (Eds.), Plant cell culture secondary metabolism toward industrial application (pp. 167-186). CRC Press LLC. https://doi.org/10.1007/978-1-4615-5919-1_9
  • Efferth, T. (2019). Biotechnology applications of plant callus cultures. Engineering, 5(1), 50-59.https://doi.org/10.1016/j.eng.2018.11.006
  • Gamborg, O. L., Miller, R., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  • Gao, L., Liu, J., Liao, L., Gao, A., Njuguna, B. N., Zhao, C., ... & Han, Y. (2023). Callus induction and adventitious root regeneration of cotyledon explants in peach trees. Horticulturae, 9(8), 850. https://doi.org/10.3390/horticulturae9080850
  • Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D. M., & Thorpe, T. A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In vitro Cellular & Developmental Biology-Plant, 32, 272-289. https://doi.org/10.1007/BF02822700
  • George, E. F., Hall, M. A., & De Klerk, G. J. (2008). Plant propagation by tissue culture (3rd ed.). Springer. https://doi.org/10.1007/978-1-4020-5005-3 Gray, W. M. (2004). Hormonal regulation of plant growth and development. PLoS Biology, 2(9), E311. https://doi.org/10.1371/journal.pbio.0020311
  • Hayta, S., Smedley, M. A., Li, J., Harwood, W. A., & Gilmartin, P. M. (2016). Plant regeneration from leaf-derived callus cultures of primrose (Primula vulgaris). HortScience, 51(5), 558-562. https://doi.org/10.21273/HORTSCI.51.5.558
  • Hussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant tissue culture: Current status and opportunities. Recent Advances in Plant In Vitro Culture, 6(10), 1-28. https://doi.org/10.5772/50568
  • Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: Mechanisms of induction and repression. The Plant Cell, 25(9), 3159-3173. https://doi.org/10.1105/tpc.113.116053
  • Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Inoue, Y., Seki, M., Sakakibara, H., Sugimoto, K., & Ohme-Takagi, M. (2011). The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514. https://doi.org/10.1016/j.cub.2011.02.020
  • Khan, N., Ahmed, M., Hafiz, I., Abbasi, N., Ejaz, S., & Anjum, M. (2015). Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. Oeno One, 49(1), 37-45. https://doi.org/10.20870/oeno-one.2015.49.1.95
  • Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168.
  • Kotb, O. M., Abd EL-Latif, F. M., Atawia, A. R., & Saleh, S. S. (2020). In vitro propagation and callus induction of pear (Pyrus communis) Cv. Le-Conte. Asian Journal of Biotechnology and Genetic Engineering, 3(2), 1-10.
  • Li, S. M., Zheng, H. X., Zhang, X. S., & Sui, N. (2021). Cytokinins as central regulators during plant growth and stress response. Plant cell reports, 40, 271-282. https://doi.org/10.1007/s00299-020-02612-1
  • Lloyd, G., & McCown, B. (1980). Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. International Plant Propagation Society, 30, 421–427
  • Martínez, M. E., Poirrier, P., Prüfer, D., Gronover, C. S., Jorquera, L., Ferrer, P., ... & Chamy, R. (2018). Kinetics and modeling of cell growth for potential anthocyanin induction in cultures of Taraxacum officinale GH Weber ex Wiggers (Dandelion) in vitro. Electronic Journal of Biotechnology, 36, 15-23. https://doi.org/10.1016/j.ejbt.2018.08.006
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Ozden, M. (2024). Secondary metabolite production in callus cultures of Vitis vinifera: influence of genotype and sucrose concentration in the medium on antioxidant activity. Acta Physiologiae Plantarum, 46(1), 6. https://doi.org/10.1007/s11738-023-03630-8
  • Parihar, S., & Sharma, D. (2021). A brief overview on Vitis vinifera. Scholars Academic Journal of Pharmacy, 12, 231-239. https://doi.org/10.36347/sajp.2021.v10i12.005
  • Pehlivan, E. C., Kunter, B., & Royandazagh, S. D. (2017). Choice of explant material and media for in vitro callus regeneration in Sultana grape cultivar (Vitis vinifera L.). Tekirdağ Ziraat Fakültesi Dergisi. The Special Issue of 2nd International Balkan Agriculture Congress, 30-34.
  • Phillips, G. C., & Garda, M. (2019). Plant tissue culture media and practices: an overview. In Vitro Cellular & Developmental Biology - Plant, 55, 242–257. https://doi.org/10.1007/s11627-019-09983-5
  • Qu, J., Zhang, W., Yu, X., & Jin, M. (2005). Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Fréaux suspension cultures. Biotechnology and Bioprocess Engineering, 10(2), 155-161. https://doi.org/10.1007/BF02932586
  • Robinson, J., Harding, J., & Vouillamoz, J. (2013). Wine grapes: a complete guide to 1,368 vine varieties, including their origins and flavours. Penguin UK.
  • Skoog, F. (1957). Chemical regulation of growth and organ formation in plant tissue cultured in vitro. In Symposium of the Society for Experimental Biology. volume.(11), 118-131. https://doi.org/10.1016/B978-0-12-007901-8.50013-X
  • Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin–cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616-625. https://doi.org/10.1093/mp/ssr007
  • Teale, W. D., Paponov, I. A., & Palme, K. (2006). Auxin in action: Signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, 7(11), 847-859. https://doi.org/10.1038/nrm2020
  • Wang, C., He, R., Lu, J., & Zhang, Y. (2018). Selection and regeneration of Vitis vinifera Chardonnay hydroxyproline-resistant calli. Protoplasma, 255, 1413-1422. https://doi.org/10.1007/s00709-018-1240-2
  • Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180–185. https://doi.org/10.1002/wics.147
  • Wu, J., Zhang, J., Hao, X., Lv, K., Xie, Y., & Xu, W. (2024). Establishment of an efficient callus transient transformation system for Vitis vinifera cv. 'Chardonnay'. Protoplasma, 261(2), 351-366. https://doi.org/10.1007/s00709-023-01901-2
There are 35 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Research Articles
Authors

Melis Sinem Polat This is me 0009-0003-0363-5554

Hilal Betul Kaya 0000-0002-2543-7212

Project Number 2020-123
Early Pub Date March 27, 2025
Publication Date
Submission Date August 9, 2024
Acceptance Date March 23, 2025
Published in Issue Year 2025 Volume: 34 Issue: SI

Cite

APA Polat, M. S., & Kaya, H. B. (2025). Investigation of callus induction in Chardonnay grapevine (Vitis vinifera L.). Biotech Studies, 34(SI), 30-36. https://doi.org/10.38042/biotechstudies.1666641


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services