Araştırma Makalesi
BibTex RIS Kaynak Göster

Aktif Araç Süspansiyon Sistemi İçin Makine Öğrenimi Tabanlı Kontrol Sisteminin Geliştirilmesi

Yıl 2022, , 421 - 428, 30.06.2022
https://doi.org/10.17798/bitlisfen.1014488

Öz

Bu çalışmada, araç aktif süspansiyon sistemini (VASS) kontrol etmek için makine öğrenme yöntemlerinde biri olan Gaussian süreci (GP) algoritması tasarlanmıştır. Deneysel veriler denetimli öğrenme yöntemi (regresyon yöntemi) ile eğitildi. Veriler, tam durum geri beslemeli optimal kontrol yaklaşımına dayalı olarak ayarlanmış optimal bir doğrusal ikinci dereceden kontrolörden elde edildi. Sonuçlar, önerilen makine öğrenme (ML) tabanlı yere nüfuz eden radar (GPR) denetleyicisinin, yaylı kütle konumundaki salınımı azaltma açısından, sırasıyla kare ve rastgele yol koşulları için sırasıyla %15 ve %21,64 azalma ile optimal denetleyiciden daha iyi performans ortaya koyduğunu göstermiştir.

Kaynakça

  • Sitnik L. J., Magdziak-Tokłowicz M., Wróbel R., Kardasz P. 2020. “Vehicle vibration in human health,” J. KONES, 20(4): 411–418.
  • Shahid Y. and Wei M. 2020. “Comparative analysis of different model-based controllers using active vehicle suspension system,” Algorithms, 13(1): 10.
  • Watton J., Holford K. M., Surawattanawan P. 2004. “The application of a programmable servo controller to state control of an electrohydraulic active suspension,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng, 218(12): 1367–1377.
  • Pang H., Zhang X., Yang J., Shang Y. 2019. “Adaptive backstepping‐based control design for uncertain nonlinear active suspension system with input delay,” Int. J. Robust Nonlinear Control, 29(16): 5781–5800.
  • Ovalle L., Ríos H., Ahmed H. 2021 “Robust Control for an Active Suspension System via Continuous Sliding-Mode Controllers,” Eng. Sci. Technol. an Int. J.
  • Sun W., Gao H., Kaynak O. 2012. “Adaptive backstepping control for active suspension systems with hard constraints,” IEEE/ASME Trans. mechatronics, 18(3): 1072–1079.
  • Yagiz N. and Hacioglu Y. 2008. “Backstepping control of a vehicle with active suspensions,” Control Eng. Pract., 16(12): 1457–1467.
  • Taskin Y., Hacioglu Y., Yagiz N. 2017. “Experimental evaluation of a fuzzy logic controller on a quarter car test rig,” J. Brazilian Soc. Mech. Sci. Eng, 39(7): 2433–2445.
  • Rashid U., Jamil M., Gilani S. O., Niazi I. K. 201. “LQR based training of adaptive neuro-fuzzy controller,” in International Workshop on Neural Networks, 54: 311–322.
  • Huang S. J. and Lin W. C. 2007. “A neural network based sliding mode controller for active vehicle suspension,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng, 221(11): 1381–1397.
  • Heidari M. and Homaei H. 2013. “Design a PID controller for suspension system by back propagation neural network,” Journal of Eng., vol: 2013.
  • Brunton S. L. and Kutz J. N. 2019. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, vol: 60(472).
  • “Active Suspension - Quanser.”. https://www.quanser.com/products/active-suspension. (Available date: 21.09.2021).
  • Kopsiaftis G., Protopapadakis E., Voulodimos A., Doulamis N., Mantoglou A. 2019. “Gaussian process regression tuned by bayesian optimization for seawater intrusion prediction,” Comput. Intell. Neurosci, vol: 2019.
  • Zhang J., Li W., Zeng L., Wu L. 2016. “An adaptive Gaussian process‐based method for efficient Bayesian experimental design in groundwater contaminant source identification problems,” Water Resour. Res, 52(8): 5971–5984.
  • Ceylan Z. 2020. “Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models,” J. Forecast, 39(6): 944–956.
  • Chen X., Tian Y., Zhang T., Gao J. 2020. “Differential evolution based manifold Gaussian process machine learning for microwave Filter’s parameter extraction,” IEEE Access, 8: 146450–146462.
  • González A., O’brien E. J., Li Y.-Y., Cashell K. 2008. “The use of vehicle acceleration measurements to estimate road roughness,” Veh. Syst. Dyn, 46,(6): 483–499.

Development of Machine Learning Based Control System for Vehicle Active Suspension System

Yıl 2022, , 421 - 428, 30.06.2022
https://doi.org/10.17798/bitlisfen.1014488

Öz

In this paper, Gaussian process (GP) algorithm, which is one of the machine learning methods, is designed to control the vehicle active suspension system (VASS). Experimental data were trained by supervised learning method (regression method). The data were obtained from an optimal linear quadratic controller tuned based on a full state feedback optimal control approach. The results demonstrated that the proposed machine learning (ML) based ground-penetrating radar (GPR) controller outperforms the optimal controller under uncertainties in terms of reducing the oscillation in sprung mass position with a 15% and 21.64% reduction for square and random road conditions, respectively.

Kaynakça

  • Sitnik L. J., Magdziak-Tokłowicz M., Wróbel R., Kardasz P. 2020. “Vehicle vibration in human health,” J. KONES, 20(4): 411–418.
  • Shahid Y. and Wei M. 2020. “Comparative analysis of different model-based controllers using active vehicle suspension system,” Algorithms, 13(1): 10.
  • Watton J., Holford K. M., Surawattanawan P. 2004. “The application of a programmable servo controller to state control of an electrohydraulic active suspension,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng, 218(12): 1367–1377.
  • Pang H., Zhang X., Yang J., Shang Y. 2019. “Adaptive backstepping‐based control design for uncertain nonlinear active suspension system with input delay,” Int. J. Robust Nonlinear Control, 29(16): 5781–5800.
  • Ovalle L., Ríos H., Ahmed H. 2021 “Robust Control for an Active Suspension System via Continuous Sliding-Mode Controllers,” Eng. Sci. Technol. an Int. J.
  • Sun W., Gao H., Kaynak O. 2012. “Adaptive backstepping control for active suspension systems with hard constraints,” IEEE/ASME Trans. mechatronics, 18(3): 1072–1079.
  • Yagiz N. and Hacioglu Y. 2008. “Backstepping control of a vehicle with active suspensions,” Control Eng. Pract., 16(12): 1457–1467.
  • Taskin Y., Hacioglu Y., Yagiz N. 2017. “Experimental evaluation of a fuzzy logic controller on a quarter car test rig,” J. Brazilian Soc. Mech. Sci. Eng, 39(7): 2433–2445.
  • Rashid U., Jamil M., Gilani S. O., Niazi I. K. 201. “LQR based training of adaptive neuro-fuzzy controller,” in International Workshop on Neural Networks, 54: 311–322.
  • Huang S. J. and Lin W. C. 2007. “A neural network based sliding mode controller for active vehicle suspension,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng, 221(11): 1381–1397.
  • Heidari M. and Homaei H. 2013. “Design a PID controller for suspension system by back propagation neural network,” Journal of Eng., vol: 2013.
  • Brunton S. L. and Kutz J. N. 2019. Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, vol: 60(472).
  • “Active Suspension - Quanser.”. https://www.quanser.com/products/active-suspension. (Available date: 21.09.2021).
  • Kopsiaftis G., Protopapadakis E., Voulodimos A., Doulamis N., Mantoglou A. 2019. “Gaussian process regression tuned by bayesian optimization for seawater intrusion prediction,” Comput. Intell. Neurosci, vol: 2019.
  • Zhang J., Li W., Zeng L., Wu L. 2016. “An adaptive Gaussian process‐based method for efficient Bayesian experimental design in groundwater contaminant source identification problems,” Water Resour. Res, 52(8): 5971–5984.
  • Ceylan Z. 2020. “Assessment of agricultural energy consumption of Turkey by MLR and Bayesian optimized SVR and GPR models,” J. Forecast, 39(6): 944–956.
  • Chen X., Tian Y., Zhang T., Gao J. 2020. “Differential evolution based manifold Gaussian process machine learning for microwave Filter’s parameter extraction,” IEEE Access, 8: 146450–146462.
  • González A., O’brien E. J., Li Y.-Y., Cashell K. 2008. “The use of vehicle acceleration measurements to estimate road roughness,” Veh. Syst. Dyn, 46,(6): 483–499.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ali Rıza Kaleli 0000-0002-3234-5922

Halil İbrahim Akolaş 0000-0002-3153-8044

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 25 Ekim 2021
Kabul Tarihi 6 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE A. R. Kaleli ve H. İ. Akolaş, “Development of Machine Learning Based Control System for Vehicle Active Suspension System”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 11, sy. 2, ss. 421–428, 2022, doi: 10.17798/bitlisfen.1014488.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr