BAYES AĞLARI KULLANARAK HATA TEMELLİ BAKIM PLANLAMASI: HİDROLİK TÜRBİNDE BİR VAKA ÇALIŞMASI
Yıl 2022,
, 301 - 312, 24.03.2022
Gökhan Kahraman
,
Melih Yücesan
Öz
Enerji sektöründe mevcut altyapıların değerlendirilmesi dünya için büyük ekonomik öneme sahiptir. Hidroelektrik santrallerin enerji üretim ömrünün uzatılması, ekipmanların bakımı ve yenilenmesi ile ilgili mantıklı kararlara bağlıdır. Bu amaçla, türbin arızasını hesaplamak için hidrolik türbindeki arızaları değerlendirmek için bir Bayes ağı (BN) uygulanmıştır. Sistemin işleyişini etkileyecek kırk altı düğüm tespit edilmiştir. En yüksek arka olasılıklı arızalar için önleyici tedbirler oluşturulmuştur. Dört farklı durum oluşturularak arıza olasılıkları ve ana arızanın değişimi hesaplanmıştır. Her durumda ne kadar tasarruf yapılabileceği bakımla belirlenir. Önerilen bu çerçeve, hidroelektrik santral operatörleri için bakım stratejilerinin belirlenmesinde yol gösterici olacaktır.
Kaynakça
- M.Topçu, C.T.Tugcu, The impact of renewable energy consumption on income inequality: Evidence from developed countries, Renewable Energy, 2019. https://doi.org/10.1016/j.renene.2019.11.103
- IHA Central Office, 2018. Hydropower Status Report: Sector Trends and Insights. IHA International hydropower association, pp. 8.
- Krishnasamy, L., Khan, F., & Haddara, M. (2005). Development of a risk-based maintenance (RBM) strategy for a power-generating plant. Journal of Loss Prevention in the process industries, 18(2), 69-81.
- Egusquiza, E., Valero, C., Estévez, A., Guardo, A., & Coussirat, M. (2011). Failures due to ingested bodies in hydraulic turbines. Engineering failure analysis, 18(1), 464-473.
- Xu, D. Chen, H. Li, K. Zhuang, X. Hu, J. Li, H.I. Skjelbred, J. Kong, E. Patelli, Priority analysis for risk factors of equipment in a hydraulic turbine generator unit, Journal of Loss Prevention in the Process Industries, 58 (2019) 1–7.
- Akash, B. A., Mamlook, R., & Mohsen, M. S. (1999). Multi-criteria selection of electric power plants using analytical hierarchy process. Electric Power Systems Research, 52(1), 29-35.
- Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, 63, 458-466.
- Selak, V., Elley, C. R., Bullen, C., Crengle, S., Wadham, A., Rafter, N., ... & Milne, R. J. (2014). Effect of fixed dose combination treatment on adherence and risk factor control among patients at high risk of cardiovascular disease: randomised controlled trial in primary care. Bmj, 348, g3318.
- Tang, W.Y., Li, Z.M., Tu, Y., 2018. Sustainability risk evaluation for large-scale hydropower projects with hybrid uncertainty. Sustainability 10 (1), 138.
- Vassoney, E., Mochet, A.M., Comoglio, C., 2017. Use of multicriteria analysis (MCA) for sustainable hydropower planning and management. J. Environ. Manag. 196, 48–55.
- Sarkar, A., & Behera, D. K. (2012). Development of risk based maintenance strategy for gas turbine power system. International Journal of Advanced Research in Engineering and Apllied Sciences, 1(2), 20-38.
- Dawotola, A. W., Trafalis, T. B., Mustaffa, Z., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2013). Risk-based maintenance of a cross-country petroleum pipeline system. Journal of pipeline systems engineering and practice, 4(3), 141-148.
- Ostrom, L. T., & Wilhelmsen, C. A. (2019). Risk assessment: tools, techniques, and their applications. John Wiley & Sons.
- Ren, J., Jenkinson, I., Wang, J., Xu, D.L., Yang, J.B., 2009. An Offshore Risk Analysis.
- El-Awady, A., Ponnambalam, K., Bennett, T., Zielinski, A., & Verzobio, A. (2019). Bayesian Network approach for failure prediction of Mountain Chute dam and generating station.
- Khakzad, N., Khan, F., & Amyotte, P. (2013). Quantitative risk analysis of offshore drilling operations: A Bayesian approach. Safety science, 57, 108-117.
- Chang, Y., Chen, G., Wu, X., Ye, J., Chen, B., & Xu, L. (2018). Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network. Journal of Loss Prevention in the Process Industries, 51, 42-53.
- Cofino, A. S., Cano Trueba, R., Sordo, C. M., & Gutiérrez Llorente, J. M. (2002). Bayesian networks for probabilistic weather prediction.
- Petry, U., Hundecha, Y., Pahlow, M., & Schumann, A. (2008). Generation of severe flood scenarios by stochastic rainfall in combination with a rainfall runoff model. In Proceedings of the 4th International Symposium on Flood Defense (pp. 6-8).
- Dawotola, A. W., Trafalis, T. B., Mustaffa, Z., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2013). Risk-based maintenance of a cross-country petroleum pipeline system. Journal of pipeline systems engineering and practice, 4(3), 141-148.
- [20] Hellman, S., McGovern, A., & Xue, M. (2012). Learning ensembles of Continuous Bayesian Networks: An application to rainfall prediction. In 2012 Conference on Intelligent Data Understanding (pp. 112-117). IEEE.
- [21] Garrote, L., Molina, M., & Mediero, L. (2006). Probabilistic forecasts using bayesian networks calibrated with deterministic rainfall-runoff models. In Extreme hydrological events: new concepts for security (pp. 173-183). Springer, Dordrecht.
- [22] Zhang, X., Zhao, H., Xie, Y., & Yin, Z. (2006). Bayesian network model for fault diagnosis of hydropower equipment. Journal-Northeastern University Natural Science, 27(3), 276.
- [23] Wang, S. Q., Dulaimi, M. F., & Aguria, M. Y. (2004). Risk management framework for construction projects in developing countries. Construction Management and Economics, 22(3), 237-252.
- Yucesan, M., Gul, M., & Celik, E. (2021a). A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method. Complex & Intelligent Systems, 7(3), 1547-1564.
- Yucesan, M., Muhammet, G. U. L., & Guneri, A. F. (2021b). A Bayesian network-based approach for failure analysis in weapon industry. Journal of Thermal Engineering, 7(2), 222-229.
- Cai, B., Liu, H., & Xie, M. (2016). A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks. Mechanical Systems and Signal Processing, 80, 31-44.
- Marvin, H. J., Bouzembrak, Y., Janssen, E. M., van der Zande, M., Murphy, F., Sheehan, B., ... & Bouwmeester, H. (2017). Application of Bayesian networks for hazard ranking
- Yucesan M., Kahraman G., Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP, Energy Policy, 126, 2019, 343-351.
- (URL-1) https://www.microsoft.com/en-us/download/details.aspx?id=52299
FAILURE-BASED MAINTENANCE PLANNING USING BAYESIAN NETWORKS: A CASE STUDY HYDRAULIC TURBINE
Yıl 2022,
, 301 - 312, 24.03.2022
Gökhan Kahraman
,
Melih Yücesan
Öz
The assessment of existing infrastructures in the energy sector is of great economic importance for the world. The extension of the power generation life of hydroelectric power plants depends on logical decisions regarding the maintenance and renewal of the equipment. For this purpose, a Bayesian network (BN) has been applied to evaluate the failures in the hydraulic turbine to calculate the failure of the turbine. Forty-six nodes have been identified that will affect the operation of the system. Preventive measures have been established for failures with the highest posterior probability. By creating four different cases, failure probabilities and the change of the main fault have been calculated. How much savings could be made in each case is determined with the maintenance. This proposed framework will be guided in determining the maintenance strategies for hydroelectric power plant operators.
Kaynakça
- M.Topçu, C.T.Tugcu, The impact of renewable energy consumption on income inequality: Evidence from developed countries, Renewable Energy, 2019. https://doi.org/10.1016/j.renene.2019.11.103
- IHA Central Office, 2018. Hydropower Status Report: Sector Trends and Insights. IHA International hydropower association, pp. 8.
- Krishnasamy, L., Khan, F., & Haddara, M. (2005). Development of a risk-based maintenance (RBM) strategy for a power-generating plant. Journal of Loss Prevention in the process industries, 18(2), 69-81.
- Egusquiza, E., Valero, C., Estévez, A., Guardo, A., & Coussirat, M. (2011). Failures due to ingested bodies in hydraulic turbines. Engineering failure analysis, 18(1), 464-473.
- Xu, D. Chen, H. Li, K. Zhuang, X. Hu, J. Li, H.I. Skjelbred, J. Kong, E. Patelli, Priority analysis for risk factors of equipment in a hydraulic turbine generator unit, Journal of Loss Prevention in the Process Industries, 58 (2019) 1–7.
- Akash, B. A., Mamlook, R., & Mohsen, M. S. (1999). Multi-criteria selection of electric power plants using analytical hierarchy process. Electric Power Systems Research, 52(1), 29-35.
- Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, 63, 458-466.
- Selak, V., Elley, C. R., Bullen, C., Crengle, S., Wadham, A., Rafter, N., ... & Milne, R. J. (2014). Effect of fixed dose combination treatment on adherence and risk factor control among patients at high risk of cardiovascular disease: randomised controlled trial in primary care. Bmj, 348, g3318.
- Tang, W.Y., Li, Z.M., Tu, Y., 2018. Sustainability risk evaluation for large-scale hydropower projects with hybrid uncertainty. Sustainability 10 (1), 138.
- Vassoney, E., Mochet, A.M., Comoglio, C., 2017. Use of multicriteria analysis (MCA) for sustainable hydropower planning and management. J. Environ. Manag. 196, 48–55.
- Sarkar, A., & Behera, D. K. (2012). Development of risk based maintenance strategy for gas turbine power system. International Journal of Advanced Research in Engineering and Apllied Sciences, 1(2), 20-38.
- Dawotola, A. W., Trafalis, T. B., Mustaffa, Z., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2013). Risk-based maintenance of a cross-country petroleum pipeline system. Journal of pipeline systems engineering and practice, 4(3), 141-148.
- Ostrom, L. T., & Wilhelmsen, C. A. (2019). Risk assessment: tools, techniques, and their applications. John Wiley & Sons.
- Ren, J., Jenkinson, I., Wang, J., Xu, D.L., Yang, J.B., 2009. An Offshore Risk Analysis.
- El-Awady, A., Ponnambalam, K., Bennett, T., Zielinski, A., & Verzobio, A. (2019). Bayesian Network approach for failure prediction of Mountain Chute dam and generating station.
- Khakzad, N., Khan, F., & Amyotte, P. (2013). Quantitative risk analysis of offshore drilling operations: A Bayesian approach. Safety science, 57, 108-117.
- Chang, Y., Chen, G., Wu, X., Ye, J., Chen, B., & Xu, L. (2018). Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network. Journal of Loss Prevention in the Process Industries, 51, 42-53.
- Cofino, A. S., Cano Trueba, R., Sordo, C. M., & Gutiérrez Llorente, J. M. (2002). Bayesian networks for probabilistic weather prediction.
- Petry, U., Hundecha, Y., Pahlow, M., & Schumann, A. (2008). Generation of severe flood scenarios by stochastic rainfall in combination with a rainfall runoff model. In Proceedings of the 4th International Symposium on Flood Defense (pp. 6-8).
- Dawotola, A. W., Trafalis, T. B., Mustaffa, Z., Van Gelder, P. H. A. J. M., & Vrijling, J. K. (2013). Risk-based maintenance of a cross-country petroleum pipeline system. Journal of pipeline systems engineering and practice, 4(3), 141-148.
- [20] Hellman, S., McGovern, A., & Xue, M. (2012). Learning ensembles of Continuous Bayesian Networks: An application to rainfall prediction. In 2012 Conference on Intelligent Data Understanding (pp. 112-117). IEEE.
- [21] Garrote, L., Molina, M., & Mediero, L. (2006). Probabilistic forecasts using bayesian networks calibrated with deterministic rainfall-runoff models. In Extreme hydrological events: new concepts for security (pp. 173-183). Springer, Dordrecht.
- [22] Zhang, X., Zhao, H., Xie, Y., & Yin, Z. (2006). Bayesian network model for fault diagnosis of hydropower equipment. Journal-Northeastern University Natural Science, 27(3), 276.
- [23] Wang, S. Q., Dulaimi, M. F., & Aguria, M. Y. (2004). Risk management framework for construction projects in developing countries. Construction Management and Economics, 22(3), 237-252.
- Yucesan, M., Gul, M., & Celik, E. (2021a). A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method. Complex & Intelligent Systems, 7(3), 1547-1564.
- Yucesan, M., Muhammet, G. U. L., & Guneri, A. F. (2021b). A Bayesian network-based approach for failure analysis in weapon industry. Journal of Thermal Engineering, 7(2), 222-229.
- Cai, B., Liu, H., & Xie, M. (2016). A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks. Mechanical Systems and Signal Processing, 80, 31-44.
- Marvin, H. J., Bouzembrak, Y., Janssen, E. M., van der Zande, M., Murphy, F., Sheehan, B., ... & Bouwmeester, H. (2017). Application of Bayesian networks for hazard ranking
- Yucesan M., Kahraman G., Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP, Energy Policy, 126, 2019, 343-351.
- (URL-1) https://www.microsoft.com/en-us/download/details.aspx?id=52299