Araştırma Makalesi
BibTex RIS Kaynak Göster

Deciphering the relationship between the mass, size and engine properties of Boeing and Airbus aircraft

Yıl 2022, , 499 - 507, 30.06.2022
https://doi.org/10.17798/bitlisfen.1036634

Öz

In the study, it is aimed to analyze the mass, size, and engine characteristics of different Boeing and Airbus aircraft models, which are the duopoly in air transportation market, and to decipher the correlations between the conceptual design parameters of these aircraft. For this purpose, data on the production year, mass, size, and engine characteristics of 36 Boeing and 20 Airbus aircraft were collected. The fuselage length, cabin width, wingspan and wing area were considered as the size characteristics. In order to compare the mass characteristics of aircraft, the operational empty mass, engine mass and maximum take-off weight (MTOW) were examined. Since commercial jets are important in terms of aerodynamic design, that is, they determine the status of these aircraft models in the matching table, thrust weight and wing loading characteristics are also examined. Th fineness ratios decreased linearly as the wingspan/fuselage length ratios increased. Similarly, as MTOW increases, the operational empty weight/MTOW ratio tends to decrease. Both engine mass and the total thrust of the engines tended to increase linearly with MTOW. The correlations obtained on mass size and engine relations will contribute to the conceptual aircraft design and engine selection.

Kaynakça

  • [1] Datamonitor, Airlines Industry Profile: United States November 2008: 13–14
  • [2] J. Flottau, Airbus and Boeing ponder higher narrowbody production: after strong 2017, both manufacturers see upward pressure on rates; suppliers warn of potential bottlenecks, Aviation Week & Space Technology 2018.
  • [3] Flight Global, World Airline Census 2019, Flight International.
  • [4] S. Chanda, The Battle of the Big Boys: A Critical Analysis of the Boeing Airbus Dispute Before the WTO. Available at SSRN 1944588, 2011.
  • [5] J. M. King, “The Airbus 380 and Boeing 787: A role in the recovery of the airline transport market,” Journal of air transport management, vol. 13, no. 1, pp. 16-22, 2007.
  • [6] M. Zeinali and D. Rutherford, “Trends in Aircraft Efficiency and Design Parameters,” International Council on Clean Transportation, 2010.
  • [7] L. M. Ariffin, A. H. Rostam and W. M. E. Shibani, “Study of Aircraft Thrust-to-Weight Ratio,” Journal of Aviation and Aerospace Technology, vol. 1 no. 2, 2019.
  • [8] N. Al-Najjar, I. Aoyagi, G. Goldstein, T. Korupp, B. Liu and S. Singh, Boeing and Airbus: Competitive Strategy in the Very-Large-Aircraft Market, Kellogg School of Management Cases.
  • [9] S. E. Bodily and K. C. Lichtendahl, Airbus and Boeing: Superjumbo Decisions Darden Business Publishing Cases.
  • [10] L. B. Campos, “On the competition between Airbus and Boeing,” Air & Space Europe, vol. 3, no. 1-2, pp. 11-14, 2001.
  • [11] R. Onishi, “Flying Ocean Giant: A Multi-Fuselage Concept for Ultra-Large Flying Boat,”. In 42nd AIAA Aerospace Sciences Meeting and Exhibit p. 696, 2004.
  • [12] R. Curran, A. Gkirgkis and C. Kassapoglou, “A Value Operations Methodology (VOM) Approach to Multi-Criteria Assessment of Similar-Class Air Vehicles: An Airbus A350 Versus the Boeing 787 Case Study,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, p. 4253, 2017.
  • [13] A. Jasmine, A. R. Putranto, A. Charles and A. Sodikin, “Payload Optimization Comparison of Airbus 330–300 and Boeing 777–300ER Aircraft,” Journal of Physics: Conference Series, vol. 1573, no. 1, pp. 012023, July, 2020.
  • [14] D. Raymer, Aircraft design: a conceptual approach, American Institute of Aeronautics and Astronautics, Inc.
  • [15] A. Bejan, J. D. Charles and S. Lorente, “The evolution of airplanes,” Journal of Applied Physics, vol. 116 no. 4, pp. 044901, 2014.
  • [16] A. C. Marta, Parametric study of a genetic algorithm using a aircraft design optimization problem, Report Stanford University, Department of Aeronautics and Astronautics.
  • [17] J. Paul, Jane’s all the world’s aircraft 2004-2005, Jane’s Information Group Inc, Alexandria.
  • [18] B. H. Dutton, Rivals in the Sky Airbus and Boeing, Kesley Publishing.
  • [19] Boeing, Technical Specs. https://www.boeing.com/commercial/ (access date: 20.08.2021).
  • [20] Airbus, S. A. S. Airbus Family Figures, Airbus, 2021.
  • [21] S. Durmus, “Theoretical model proposal on direct calculation of wetted area and maximum lift-to-drag ratio,” Aircraft Engineering and Aerospace Technology, vol. 93 no. 6, pp. 1097-1103, 2021.

Boeing ve Airbus uçaklarının kütle, boyut ve motor özellikleri arasındaki ilişkinin incelenmesi

Yıl 2022, , 499 - 507, 30.06.2022
https://doi.org/10.17798/bitlisfen.1036634

Öz

Çalışmada, yolcu hava taşımacılığı pazarında ikili olan farklı Boeing ve Airbus uçak modellerinin kütle, boyut ve motor özelliklerinin analiz edilmesi ve bu uçakların kavramsal tasarım özellikleri ile bu özellikler arasındaki korelasyonların deşifre edilmesi amaçlanmıştır. Bu amaçla, 36 Boeing ve 20 Airbus uçağının üretim yılı, kütlesi, büyüklüğü ve motor özellikleri verileri toplandı. Gövde uzunluğu, kabin genişliği, kanat açıklığı ve kanat alanı, gövde ve kanadın boyut özellikleri olarak ele alınmıştır. Uçağın kütle özelliklerinin karşılaştırılması açısından operasyonel boş kütle, motor kütlesi ve maksimum kalkış kütlesi incelenmiştir. Ticari jetlerin aerodinamik tasarım, yani bu uçak modellerinin eşleştirme tablosundaki konumlarının belirlenmesi açısından önemli olması nedeniyle itme ağırlığı ve kanat yükleme özellikleri ayrıca incelenmiştir. Çalışma sonucunda ticari yolcu jetlerinin kavramsal tasarımında kullanılmak üzere dağılım tablolarından elde edilen güç korelasyonları ve doğrusal korelasyonlar ortaya çıkarılmıştır. Airbus ve Boeing uçaklarında incelik oranları, kanat açıklığı/gövde uzunluğu oranları arttıkça lineer şekilde azalmıştır. Benzer şekilde MTOW arttıkça operasyonel boş ağırlık/MTOW oranı da azalma eğiliminde olmaktadır. Hem motor kütlesi hem de motorların toplam itkisi MTOW ile doğrusal bir şekilde artma eğilimi göstermiştir. Mevcut çalışmada kütle boyut ve motor ilişkileri hakkında elde edilen doğrusal ve üssel korelasyonlar ticari uçakların konsept tasarım aşamasına katkı sağlayacaktır.

Kaynakça

  • [1] Datamonitor, Airlines Industry Profile: United States November 2008: 13–14
  • [2] J. Flottau, Airbus and Boeing ponder higher narrowbody production: after strong 2017, both manufacturers see upward pressure on rates; suppliers warn of potential bottlenecks, Aviation Week & Space Technology 2018.
  • [3] Flight Global, World Airline Census 2019, Flight International.
  • [4] S. Chanda, The Battle of the Big Boys: A Critical Analysis of the Boeing Airbus Dispute Before the WTO. Available at SSRN 1944588, 2011.
  • [5] J. M. King, “The Airbus 380 and Boeing 787: A role in the recovery of the airline transport market,” Journal of air transport management, vol. 13, no. 1, pp. 16-22, 2007.
  • [6] M. Zeinali and D. Rutherford, “Trends in Aircraft Efficiency and Design Parameters,” International Council on Clean Transportation, 2010.
  • [7] L. M. Ariffin, A. H. Rostam and W. M. E. Shibani, “Study of Aircraft Thrust-to-Weight Ratio,” Journal of Aviation and Aerospace Technology, vol. 1 no. 2, 2019.
  • [8] N. Al-Najjar, I. Aoyagi, G. Goldstein, T. Korupp, B. Liu and S. Singh, Boeing and Airbus: Competitive Strategy in the Very-Large-Aircraft Market, Kellogg School of Management Cases.
  • [9] S. E. Bodily and K. C. Lichtendahl, Airbus and Boeing: Superjumbo Decisions Darden Business Publishing Cases.
  • [10] L. B. Campos, “On the competition between Airbus and Boeing,” Air & Space Europe, vol. 3, no. 1-2, pp. 11-14, 2001.
  • [11] R. Onishi, “Flying Ocean Giant: A Multi-Fuselage Concept for Ultra-Large Flying Boat,”. In 42nd AIAA Aerospace Sciences Meeting and Exhibit p. 696, 2004.
  • [12] R. Curran, A. Gkirgkis and C. Kassapoglou, “A Value Operations Methodology (VOM) Approach to Multi-Criteria Assessment of Similar-Class Air Vehicles: An Airbus A350 Versus the Boeing 787 Case Study,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, p. 4253, 2017.
  • [13] A. Jasmine, A. R. Putranto, A. Charles and A. Sodikin, “Payload Optimization Comparison of Airbus 330–300 and Boeing 777–300ER Aircraft,” Journal of Physics: Conference Series, vol. 1573, no. 1, pp. 012023, July, 2020.
  • [14] D. Raymer, Aircraft design: a conceptual approach, American Institute of Aeronautics and Astronautics, Inc.
  • [15] A. Bejan, J. D. Charles and S. Lorente, “The evolution of airplanes,” Journal of Applied Physics, vol. 116 no. 4, pp. 044901, 2014.
  • [16] A. C. Marta, Parametric study of a genetic algorithm using a aircraft design optimization problem, Report Stanford University, Department of Aeronautics and Astronautics.
  • [17] J. Paul, Jane’s all the world’s aircraft 2004-2005, Jane’s Information Group Inc, Alexandria.
  • [18] B. H. Dutton, Rivals in the Sky Airbus and Boeing, Kesley Publishing.
  • [19] Boeing, Technical Specs. https://www.boeing.com/commercial/ (access date: 20.08.2021).
  • [20] Airbus, S. A. S. Airbus Family Figures, Airbus, 2021.
  • [21] S. Durmus, “Theoretical model proposal on direct calculation of wetted area and maximum lift-to-drag ratio,” Aircraft Engineering and Aerospace Technology, vol. 93 no. 6, pp. 1097-1103, 2021.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Seyhun Durmuş 0000-0002-1409-7355

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 16 Aralık 2021
Kabul Tarihi 20 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE S. Durmuş, “Deciphering the relationship between the mass, size and engine properties of Boeing and Airbus aircraft”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 11, sy. 2, ss. 499–507, 2022, doi: 10.17798/bitlisfen.1036634.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr