Araştırma Makalesi
BibTex RIS Kaynak Göster

Silan Kaplı SiO2 Nanopartiküllerin Cam FRP Kompozitlerin Sertlik Değerlerine Etkisi

Yıl 2022, , 751 - 758, 30.09.2022
https://doi.org/10.17798/bitlisfen.1076888

Öz

Bu çalışmada, silan kaplı SiO2 nanoparçacıkları cam elyaf takviyeli polimer (ETP) kompozitler için ikincil takviye olarak kullanılmış ve geliştirilen kompozitlerin mikrosertlik değerleri araştırılmıştır. Nanopartiküller polimer epoksi içinde sırasıyla ağırlıkça %1.5 ve %3 oranlarında karıştırılmıştır. KH550 ve KH570 olmak üzere iki farklı silan tipi değerlendirilmiştir. SiO2 nanoparçacıklarının düzgün dağılabilirliğini elde etmek için epoksi reçine ve nanopartiküller, ultrasonik homojenizasyona tabi tutuldu. Daha sonra matris, 100:25 ağırlık oranında uygun bir sertleştirici ile hazırlanmıştır. Güçlendirilmiş polimer matris, dokuma cam elyaf kumaşlarla (birincil takviye elemanı) takviye edilmiştir. Silan kaplı nano SiO2 dolgulu cam ETP kompozitleri üretmek için vakum torbası yöntemi uygulanmıştır. Vickers sertlik değerlerini belirlemek için dijital mikrosertlik test cihazı kullanılmıştır. Saf cam/epoksi kompozit 20.69 HV sertlik ile sonuçlanırken, maksimum sertlik değeri 36.56 HV olarak kaydedilmiş ve ağırlıkça %3 KH550-SiO2 dolgulu cam/epoksi ile elde edilmiştir. Silan kaplı SiO2 nanopartikülerinin dahil edilmesi, yaklaşık olarak %28'den %77'ye kadar çarpıcı iyileştirmeler sağlamıştır. Ayrıca optik mikroskop ile mikroyapı incelemesi de yapılmış olup görüntüler test sonuçlarını açıklamaya yardımcı olmuştur. Böylece, çalışmanın bulguları, silan kaplı nano SiO2 dolgunun, cam/epoksi kompozit uygulamaları için yüksek sertlik ve daha iyi aşınma direncinin istendiği durumlarda ikincil takviye olarak kullanılabileceğini göstermiştir.

Destekleyen Kurum

Kahramanmaraş Sütçü İmam Üniversitesi

Proje Numarası

2020/9-32 M

Kaynakça

  • [1] Radhwan H., Sharif S., Shayfull Z., Suhaimi M.A., Khushairi M.T.M., Fathullah K. 2019. Experimental study mechanical behaviour of epoxy resin composites filled with aluminium particles. AIP Conference Proceedings 2129, 020157.
  • [2] Elmarakbi A., Ciardiello R., Tridello A., Innocente F., Martorana B., Bertocchi F., Cristiano F., Elmarakbi M., Belingardi G. 2020. Effect of graphene nanoplatelets on the impact response of a carbon fibre reinforced composite. Mater Today Commun 25.
  • [3] Kostagiannakopoulou C., Tsilimigkra X., Sotiriadis G., Kostopoulos V. 2017. Synergy effect of carbon nano-fillers on the fracture toughness of structural composites. Compos Part B-Eng 129, 18-25.
  • [4] Singh S.K., Kumar A., Jain A. 2021. Mechanical and viscoelastic properties of SiO2/epoxy nanocomposites post-cured at different temperatures. Plastics, Rubber and Composites 50, 116-126.
  • [5] Wu Z.J., Wang M., Wang Z. 2015. The gas phase SiO2/epoxy nanocomposites with enhanced mechanical and thermal properties. High Perform Polym 27, 469-475.
  • [6] Quaresimin M., Schulte K., Zappalorto M., Chandrasekaran S. 2016. Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Compos Sci Technol 123, 187-204.
  • [7] Vinay S.S., Sanjay M.R. Siengchin S., Venkatesh C.V. 2021. Effect of Al2O3 nanofillers in basalt/epoxy composites: Mechanical and tribological properties. Polym Composite 42, 1727-1740.
  • [8] Aktitiz İ., Aydın K., Topcu A., 2021. Characterization of TiO2 Nanoparticle–Reinforced Polymer Nanocomposite Materials Printed by Stereolithography Method. Journal of Materials Engineering and Performance 30, 4975-4980.
  • [9] Geren N., Acer D.C., Uzay C., Bayramoglu M. 2021. The effect of boron carbide additive on the low-velocity impact properties of low-density foam core composite sandwich structures. Polym Composite 42, 2037-2049.
  • [10] Shuttleworth P.S., Diez-Pascual A.M., Marco C., Ellis G. 2017. Flexible Bionanocomposites from Epoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes. J Phys Chem B 121, 2454-2467.
  • [11] Zheng J.Y., Zhang X.W., Cao J., Chen R., Aziz T., Fan H., Bittencourt C. 2021. Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane. J Appl Polym Sci 138.
  • [12] Abenojar J., Tutor J., Ballesteros Y., del Real J.C., Martinez M.A. 2017. Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites. Compos Part B-Eng 120, 42-53.
  • [13] Landowski M., Budzik M., Imielinska K. 2014. Water absorption and blistering of glass fibre-reinforced polymer marine laminates with nanoparticle-modified coatings. J Compos Mater 48, 2805-2813.
  • [14] Megahed M., Megahed A.A., Agwa M.A. 2019. The influence of incorporation of silica and carbon nanoparticles on the mechanical properties of hybrid glass fiber reinforced epoxy. J Ind Text 49, 181-199.
  • [15] Santos J.C., Vieira L.M.G., Panzera T.H., Schiavon M.A., Christoforo A.L., Scarpa F. 2015. Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions. Materials & Design (1980-2015) 65, 543-549.
  • [16] Su C., Wang X., Ding L.N., Wu Z.S. 2020. Enhancement of mechanical behavior of FRP composites modified by silica nanoparticles. Constr Build Mater 262.
  • [17] Wang L.H., Tang C., Wang X.B., Zheng W. 2019. Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO2. Aip Adv 9.
  • [18] Atiqah A., Ansari M.N.M., Premkumar L. 2020. Impact and hardness properties of honeycomb natural fibre reinforced epoxy composites. Materials Today: Proceedings 29, 138-142.
  • [19] Reddy M., Valasingam S., Srinadh K. 2020. Micro Hardness and Erosive Wear Behavior of Tungsten Carbide Filled Epoxy Polymer Nano Composites. International Journal of Mathematical, Engineering and Management Sciences 5, 405-415.
  • [20] Bagci M., Imrek H., Khalfan O.M. 2015. Optimization of Test Parameters That Influence Erosive Wear Behaviors of Glass Fiber-Reinforced Epoxy Composites by Using the Taguchi Method. J Tribol-T Asme 137.
  • [21] Pun A.K., Siddhartha Singh A.K. 2019. Thermo-mechanical and Erosion Wear Peculiarity of Hybrid Composites Filled with Micro and Nano Silicon Dioxide Fillers - A Comparative Study. Silicon-Neth 11, 1885-1901.
  • [22] Safi S., Zadhoush A., Ahmadi M. 2017. Flexural and Charpy impact behaviour of epoxy/glass fabric treated by nano-SiO2 and silane blend. Plastics, Rubber and Composites 46, 314-321.
  • [23] Vander Voort G., Lucas G. 1998. Microindentation hardness testing. Metal Progress 154, 21-25.
  • [24] Singh V., Kumar P., Srivastava V.K. 2018. Influence of cement particles on the mechanical and buckling behavior of laminated GFRP composites with variation of end conditions of buckling. Mater Res Express 5.
  • [25] Ahmad T., Ahmad R., Kamran M., Wahjoedi B., Shakoor I., Hussain F., Riaz F., Jamil Z., Isaac S., Ashraf Q. 2015. Effect of Thal silica sand nanoparticles and glass fiber reinforcements on epoxy-based hybrid composite. Iran Polym J 24, 21-27.

Effect of Silane-Coated SiO2 Nanoparticles on the Hardness Values of Glass FRP Composites

Yıl 2022, , 751 - 758, 30.09.2022
https://doi.org/10.17798/bitlisfen.1076888

Öz

In this study, silane-coated SiO2 nanoparticles (as-received) were used as secondary reinforcement for glass fiber-reinforced polymer (FRP) composites, and the microhardness values of the developed composites were investigated. The nanoparticles were dispersed within the polymer epoxy at 1.5 wt.% and 3 wt.% ratios, respectively. Two different types of silane coating were used that were KH550 and KH570. The mixture of the epoxy resin and nanoparticles were subjected to ultrasonic homogenization to achieve a fine dispersibility of the SiO2 nanoparticles. Then the matrix was prepared with a suitable hardener at a weight ratio of 100:25. The strengthened polymer matrix was reinforced by woven glass fiber fabrics (primary reinforcing element). The vacuum bag method was applied to produce silane-coated nano SiO2 filled glass FRP composites. A digital microhardness testing device was used to determine the Vickers hardness values. While the pure glass/epoxy composite has resulted in a hardness of 20.69 HV, the maximum hardness value was recorded as 36.56 HV and it was obtained with 3 wt.% KH550-SiO2 filled glass/epoxy. The incorporation of silane-coated SiO2 nanoparticles has provided dramatic enhancements, approximately from 28% to 77%. The microscopic examination was also conducted via an optical microscope and the images were found helpful to explain the test results. Therefore, the findings of this study have shown that silane-coated nano SiO2 filler can be used as secondary reinforcement where high hardness and better wear resistance are desired for glass/epoxy composite applications.

Proje Numarası

2020/9-32 M

Kaynakça

  • [1] Radhwan H., Sharif S., Shayfull Z., Suhaimi M.A., Khushairi M.T.M., Fathullah K. 2019. Experimental study mechanical behaviour of epoxy resin composites filled with aluminium particles. AIP Conference Proceedings 2129, 020157.
  • [2] Elmarakbi A., Ciardiello R., Tridello A., Innocente F., Martorana B., Bertocchi F., Cristiano F., Elmarakbi M., Belingardi G. 2020. Effect of graphene nanoplatelets on the impact response of a carbon fibre reinforced composite. Mater Today Commun 25.
  • [3] Kostagiannakopoulou C., Tsilimigkra X., Sotiriadis G., Kostopoulos V. 2017. Synergy effect of carbon nano-fillers on the fracture toughness of structural composites. Compos Part B-Eng 129, 18-25.
  • [4] Singh S.K., Kumar A., Jain A. 2021. Mechanical and viscoelastic properties of SiO2/epoxy nanocomposites post-cured at different temperatures. Plastics, Rubber and Composites 50, 116-126.
  • [5] Wu Z.J., Wang M., Wang Z. 2015. The gas phase SiO2/epoxy nanocomposites with enhanced mechanical and thermal properties. High Perform Polym 27, 469-475.
  • [6] Quaresimin M., Schulte K., Zappalorto M., Chandrasekaran S. 2016. Toughening mechanisms in polymer nanocomposites: From experiments to modelling. Compos Sci Technol 123, 187-204.
  • [7] Vinay S.S., Sanjay M.R. Siengchin S., Venkatesh C.V. 2021. Effect of Al2O3 nanofillers in basalt/epoxy composites: Mechanical and tribological properties. Polym Composite 42, 1727-1740.
  • [8] Aktitiz İ., Aydın K., Topcu A., 2021. Characterization of TiO2 Nanoparticle–Reinforced Polymer Nanocomposite Materials Printed by Stereolithography Method. Journal of Materials Engineering and Performance 30, 4975-4980.
  • [9] Geren N., Acer D.C., Uzay C., Bayramoglu M. 2021. The effect of boron carbide additive on the low-velocity impact properties of low-density foam core composite sandwich structures. Polym Composite 42, 2037-2049.
  • [10] Shuttleworth P.S., Diez-Pascual A.M., Marco C., Ellis G. 2017. Flexible Bionanocomposites from Epoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes. J Phys Chem B 121, 2454-2467.
  • [11] Zheng J.Y., Zhang X.W., Cao J., Chen R., Aziz T., Fan H., Bittencourt C. 2021. Behavior of epoxy resin filled with nano-SiO2 treated with a Eugenol epoxy silane. J Appl Polym Sci 138.
  • [12] Abenojar J., Tutor J., Ballesteros Y., del Real J.C., Martinez M.A. 2017. Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites. Compos Part B-Eng 120, 42-53.
  • [13] Landowski M., Budzik M., Imielinska K. 2014. Water absorption and blistering of glass fibre-reinforced polymer marine laminates with nanoparticle-modified coatings. J Compos Mater 48, 2805-2813.
  • [14] Megahed M., Megahed A.A., Agwa M.A. 2019. The influence of incorporation of silica and carbon nanoparticles on the mechanical properties of hybrid glass fiber reinforced epoxy. J Ind Text 49, 181-199.
  • [15] Santos J.C., Vieira L.M.G., Panzera T.H., Schiavon M.A., Christoforo A.L., Scarpa F. 2015. Hybrid glass fibre reinforced composites with micro and poly-diallyldimethylammonium chloride (PDDA) functionalized nano silica inclusions. Materials & Design (1980-2015) 65, 543-549.
  • [16] Su C., Wang X., Ding L.N., Wu Z.S. 2020. Enhancement of mechanical behavior of FRP composites modified by silica nanoparticles. Constr Build Mater 262.
  • [17] Wang L.H., Tang C., Wang X.B., Zheng W. 2019. Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO2. Aip Adv 9.
  • [18] Atiqah A., Ansari M.N.M., Premkumar L. 2020. Impact and hardness properties of honeycomb natural fibre reinforced epoxy composites. Materials Today: Proceedings 29, 138-142.
  • [19] Reddy M., Valasingam S., Srinadh K. 2020. Micro Hardness and Erosive Wear Behavior of Tungsten Carbide Filled Epoxy Polymer Nano Composites. International Journal of Mathematical, Engineering and Management Sciences 5, 405-415.
  • [20] Bagci M., Imrek H., Khalfan O.M. 2015. Optimization of Test Parameters That Influence Erosive Wear Behaviors of Glass Fiber-Reinforced Epoxy Composites by Using the Taguchi Method. J Tribol-T Asme 137.
  • [21] Pun A.K., Siddhartha Singh A.K. 2019. Thermo-mechanical and Erosion Wear Peculiarity of Hybrid Composites Filled with Micro and Nano Silicon Dioxide Fillers - A Comparative Study. Silicon-Neth 11, 1885-1901.
  • [22] Safi S., Zadhoush A., Ahmadi M. 2017. Flexural and Charpy impact behaviour of epoxy/glass fabric treated by nano-SiO2 and silane blend. Plastics, Rubber and Composites 46, 314-321.
  • [23] Vander Voort G., Lucas G. 1998. Microindentation hardness testing. Metal Progress 154, 21-25.
  • [24] Singh V., Kumar P., Srivastava V.K. 2018. Influence of cement particles on the mechanical and buckling behavior of laminated GFRP composites with variation of end conditions of buckling. Mater Res Express 5.
  • [25] Ahmad T., Ahmad R., Kamran M., Wahjoedi B., Shakoor I., Hussain F., Riaz F., Jamil Z., Isaac S., Ashraf Q. 2015. Effect of Thal silica sand nanoparticles and glass fiber reinforcements on epoxy-based hybrid composite. Iran Polym J 24, 21-27.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Çağrı Uzay 0000-0002-7713-8951

Muhammed Safa Kamer 0000-0003-3852-1031

Proje Numarası 2020/9-32 M
Yayımlanma Tarihi 30 Eylül 2022
Gönderilme Tarihi 21 Şubat 2022
Kabul Tarihi 7 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

IEEE Ç. Uzay ve M. S. Kamer, “Effect of Silane-Coated SiO2 Nanoparticles on the Hardness Values of Glass FRP Composites”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 11, sy. 3, ss. 751–758, 2022, doi: 10.17798/bitlisfen.1076888.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr