This study presents a cathode-supported planar solid oxide fuel cell (SOFC) fabrication made via a single step co-sintering method and investigation of its performance. The materials used are NiO-CGO, CGO and CGO-LSCF for anode, cathode, electrolyte, respectively. Our study shows that increasing the cell size has a detrimental effect on cell single step co-sinterability. Increasing cathode thickness and reducing electrolyte thickness led to curvature decrease at the edges, however these adjustments were not enough to achieve a curvature-free cathode-supported cell. Thus, three porous alumina cover plates (total mass of 49.35 g) placed on the top of the cell during sintering were utilized to suppress curvature formation, and as a result, a nearly curvature- free cathode-supported cell was obtained. Performance of the cells were investigated. The results showed that increasing cathode thickness and decreasing electrolyte thickness had negative effects on cell performance despite enhanced single step co-sinterability of the cell. The maximum power density and OCV of the final planar cell (thickness 60-40-800 µm, anode-electrolyte-cathode) were found to be 1.71 mW cm-2 and 0.2 V, respectively, in a fuel rich condition (R:1.6). Additionally, the maximum OCV and power density among the all cells were measured from the cell (thickness 60-40-400 µm, anode-electrolyte-cathode) as 0.56 V and 24.79 mW cm-2, respectively, in a fuel rich condition (R:2.4).
Solid oxide fuel cell (SOFC) Co-sintering Cell manufacturing Cell performance Cell microstructure
Birincil Dil | İngilizce |
---|---|
Konular | Enerji, Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç) |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 21 Mart 2024 |
Yayımlanma Tarihi | 24 Mart 2024 |
Gönderilme Tarihi | 31 Ekim 2023 |
Kabul Tarihi | 15 Ocak 2024 |
Yayımlandığı Sayı | Yıl 2024 |