BibTex RIS Kaynak Göster

A New Regular Matrix Defined By Fibonacci Numbers And Its Applications

Yıl 2015, , 0 - 0, 22.12.2015
https://doi.org/10.17798/beufen.78452

Öz

The main goal of this paper is to define a new infinite Toeplitz matrix and to examine some algebraic and topological properties of the sequence spaces and where by means of this matrix.en

Kaynakça

  • Başar F., 2011. Summability Theory and Its Applications, Bentham e-Books, 410s. İstanbul.
  • Choudary B., Nanda S., 1989. Functional Analysis with Applications, John Wiley & Sons Inc, New Delhi, India, 272-273.
  • Kalman D., Mena R., 2003. The Fibonacci Numbers: Exposed, Mathematics Magazine, 76 (3): 167-181.
  • Vajda S., 1989. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Publications Inc., 190 s. New York.
  • Kara E.E., Basarir M., 2012. An Application of Fibonacci Numbers into Infinite Toeplitz Matrices, Caspian Journal of Mathematics Sciences, 1 (1): 1-6.
  • Wilansky A., 1984. Summablity Through Functional Analysis, Elsevier Science Publishers B.V., 309 s. Amsterdam.
  • Mursaleen M., Noman A.K., 2011. On Some New Sequence Spaces of Non-absolute Type Related to The Spaces and I, Filomat, 25 (2): 33-51.
  • Mursaleen M., Noman A.K., 2010. On the Space of -Convergent and Bounded Sequences, Thai Journal of Mathematics, 8 (2): 311-329.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

MURAT Karakaş

Yayımlanma Tarihi 22 Aralık 2015
Gönderilme Tarihi 21 Ekim 2015
Yayımlandığı Sayı Yıl 2015

Kaynak Göster

IEEE M. Karakaş, “A New Regular Matrix Defined By Fibonacci Numbers And Its Applications”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 2, 2015, doi: 10.17798/beufen.78452.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr